THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY

A STOCHASTIC MODEL OF
MULTIPROCESSING

Brad Alan Makrucki

CRL-TR-23-84

MARCH 1984

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

A STOCHASTIC MODEL OF
MULTIPROCESSING

by
Brad Alan Makrucki

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer, Information and Control Engineering)
in The University of Michigan
1984

Doctoral Committee:

Associate Professor Trevor N. Mudge, Chairman
Professor Daniel E. Atkins

Professor Gideon Frieder

Professor John P. Hayes

Professor Ronald J. Lomax

<:> Brad Alan Makrucki
All Rights Reserved

1984

| |
i

ABSTRACT

A STOCHASTIC MODEL OF
MULTIPROCESSING

b
Brad AlanyMakrucki

Chairman: Trevor N. Mudge

A model of the behavior of multiprocessor systems consisting of processors, an
interconnection network, and resource modules—typically memory devices—is developed.
The model allows processor activity to be represented using stochastic {inite state
machines. These stochastic finite state machines may reflect program activity directly,
or alternatively may reflect other levels of processor activity. The model is based on
approximating processor behavior using semi-Markov processes, one for each processor.
Using the semi-Markov descriptions, expressions are obtained for a set of performance
measures that may be used to evaluate system performance at the level of system opera-
tion chosen for processor representation. The set of performance measures includes tim-
ing measures such as mean rates of computation, mean program execution times, and
system component utilizations. The model is appropriate for more general systems
where requestors, whose behavior may be modeled as semi-Markov processes, contend for
system resources. In evaluating semi-Markov process quantities, queueing approxima-

tions are developed for waiting times in resource queues present within the

311 OVEIVIEW oottt ee e
3.1.2. The Model ASSUMPLIONSovoeveeeeeeeeeeneeeeneeeeeeeee
3.2. Determining Tronsition Probabilitiescccooovooomoeoeeooioeeooo
3.3. Determining Sojourn TIMeScccecveeieieerieieeeeeeeeeeeeees oo
3.4. SMP Model Parametersooveeveiioiiiieeeeeeeee e
3.5. Previous Modelsccooiimieiiieee e
3.8. An Exact APProach .c..cocoucoueiiiiniiiiiiniiieieeeeeeeeeee e
3.7. PE Independence
3.8. Fundamental SMP Relationshipscccooeeveeeeeennveerennnnn. ceveneeeens vevrnes
3.9. Measure Derivation in the SMP Modelocoooveeeemeemieeeeeeoeeeee
3.9.1. PE and System Utilizationscccoeeveeemeemeeereeeoeeoee
3.9.2. GRM Utilizations ...cccoooieeemnimiiiiiieeeeeeeeeeeeee e

3.10. Previous Models Revisited

4 WAITING TIME CALCULATIONS oottt

4.1. A State Space Reduction Technique bttt e e e s st e e e nare e
4.2. PE Synchronizationcoccooueeeoeieieeeeeeee e
4.3. An Independent SMP Formulation for Waiﬁng Timescooeuveeennnnn.
4.3.1. The Excess Connection Timecococoeeeveeemmeremeeoeooooo
4.3.2. Computation of Pr(zg,,,. = 6) e ettt e ae e rens
4.3.3. Characteristics of the Mean Excess Connection Time
4.4. A G/G/1 Approach to Waiting Time Calculationsoooovevovevnn..
4.5. Second Moment Calculationsc.ceeeeveeeeveereeereeeeeonnn. ceretreeeaenanans

4.8. CoefTicients of Variation etrereeeeerern———————seaseennnan eerrrnaeeeerrattaraaens

25

26

28

30

33

34

34

35

36

42

42

43

48

62

84

68

v

4.7. A Solution Procedureccocoeivieoimniniieniirininiieieeiienieeeee s sneeenne 63

4.8. Simulation Analysis of Waiting Timescccoovvviniiiiiiiiiiinnceriienirnnnnns 89

4.9. ConClUSIONS .oviiieiiieeeerteererrree et e et e sneeaeessseeecessneaeesanaseessnesassssns 72

5 GENERAL RELATIONSHIPS AND BOUNDS ...cociiviiiiiiniiciicccneenee 73
5.1. BOURAS ..vviiiiiiieieteenieet ettt e s s ae s asae 73

5.2. General Relationshipscooviiiieiiiieiiieeiierce et e reaeee s 75

5.3. On the Sensitivity of Utilizationsccccevviiiiiiiiiiiiinniceciiinnneenneennee 77

5.4, DerIVAtIVES .iiiviieeiieeeieeeieetteeeeeeate ettt ettt eesass e s sas e sssa s sess s e sesssnnes 78

68 SIMULATION EXPERIMENTS ..ottt ces s save e ssssosns 82
6.1. Program Execution EXperimentscccccoeiiiniieinniinniiiiiiciinnecnienen, 83
8.1.1. The Database Example ..o, 83

8.1.2. List Merge Program ..., e s 102

8.2. Synthetic EXPerimentscoccooviriiiiiiiiiiniinine st 112
6.2.1. Simple Correlation Tests ...cccoooeveeveieeicuieencnns ereeeeereeeeeenaeeanae 112

6.2.2. Asymmetric Tests ..ooovriiiiriiieceiiiiireceeeeinntete e ecerereeeececnnes 115

6.3. Comparison with a Previous Synchronous Modelc..coeeiiiiiie. 127

B.4. ConclusionS ...ccceiviiviiiiiiiiiiicet e 128

7 A CACHE MODELING EXAMPLE .ottt seiaeees 129
7.1. PE Cache Memory Organizationcoccoceviieciimierinninnnsiinnicsecnecevinsesens 130

7.2. Parameters of the PE Activity Model ..o 134

7.3. Transition Matrices and Boundsccccocvvviiiiiiiiinniinniiiiieinecnnn, 138

7.4, ConClUSIONS .oiieieiiiieiiieeeee ettt e e eatee s e sareaae e ra s e e e 143

8 MODEL EXTENSIONS AND MODIFICATIONS .ot 145

vi

8.1. State Occupation Overlapping rerereaettetteteaeeeaerasesaaaaaes 145

8.2. Multiple ReqUEstsccceeiiiiiiiiieiieiientertete ettt 148

8.3. Operating System Effectscccvriiieriiiiieeireeceeeceeeceeee e eeeeee e . 153

8.4. Phases of Computationsccccoecveominenninnineniinssienstenceccvccncvecenee 153

8.5. Process Communication 154

8.5.1. Direct Process Communicationceccceeeveeeeeeeerveeeeneeseeeessnnennn. 154

8.5.2. Indirect Process Communicationcoceeeeveeeereeeveeeseeannns 158

8.8. ConNCIUSIONS .eeieiiieieieeceeeceree et eeaeeee e neees e saasesssnees e nes 159

9 CONCLUSIONS AND SUMMARY certeteeetteeecicestsseiaentsaestnsessssesssesssssaseses 160
AP P E N D X ettt ee e e e e se e st aese s s s aaae taeeesssamsnssaeaaann 184

BIBLIOGRAPHY 440 4000000000000000000nt6000000000000000000000400040000tttsectitassottsorassstosssrartsscsssctttccns 169

vil

FIGURE

1.1

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

4.1

4.3

4.4

LIST OF FIGURES

System configuration representation

The system with SMP's and GRM queues ...,

Simple system models

Simple bubble sort program

PE state diagram for the bubble sort programccccviiiiiiiiiiniiiiiennn.

" Alternate PE state diagram for the bubble sort program ...

List layout under interleaved memory mappingcooiiiniieenieincennnieenne

Instruction execution with cache MemMOrY ...ocoooiniiiriiiiiiiiiiiiic e

Loop modelingcocoveoninnininnnnnns
Simple ARP description of 3 PE ...
SMP loop constructioncoceveene
Initial state elimination

Set transition time independence

Graphical representation of a GRM server ...

The SMP to ARP reduction resultsccooeeeimimiieririieiee e reneeeene

Simple fixed point solution scheme ..
PE synchronization timing
Linear interpolation for fom ...c......

Three moment representative timing

viil

..

v

10

20

30

ot

23

5.1

6.1

6.2

6.3

6.4

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

-~
Fay

-1
[3=

-3
w

7.4

8.1

8.2

8.3

8.4

8.5

Overlapped state occUPAtionccoovivviiiiiii et eeeeee e
Anti-reference state eXamplecooooiiiiiiiiiiiiiieeee e e
Multipie request timing exampleoooooieiiiiiieiie e e

Lookahead CIMUDG ..ooooiiiiieiiieie et e

ix

103

104

105

113

144

146

149

155

g1

Searcn first list 3
for a pointer w
the given flight
rumoer
1 1-2/8 figwns
%

/¢ flignes

The ssat rsferenced The seat referenced vas

:m:u full so access the disk
a error 1 recurd

31

74

Figure 6.7 RETRIEVE command flowchart.

6.1.1.8. The COUNT Command

This command counts the number of passengers presently scheduled on the refer-
enced flight number. Notice that no disk accesses are made, only pointer lists are refer-

enced. See figure 8.8.

92

Searcn rirst list
for a pointer 0
the given flignt
number

1 - /8 fights

-

Loop through all seats
checking to see if they
are in use, if so
Incremernt the
count, if not

just continue,

Seat in use

/

]

i
t
S

Increnent the loop counter

Figure 8.8 COUNT command flowchart.

8.1.1.7. The Simulator

Commands submitted to processors arrive as random streams. (There are P proces-
sors executing their database programs independently.) This randomness represents the
independence between user inquiries that might arise if many terminals are connected to

each PE inquiry queue so that successive inquiries originate from different terminals.

93

Hence we assume that command frequencies appropriately depict inquiry streams. Like-
wise flight and seat numbers are randomly chosen in the simulator when commands are
initiated. This is sometimes inaccurate in that a REMOVE command would not nor-
mally be attempted on an empty seat, but in the simulator many may occur. Although
not very realistic, it simplifies simulation and as long as the representation of simulator
behavior is duplicated during model parameter extraction the experiment is still valid.
(The simulator source code was examined to extract the model parameters.) The com-
mands are tied together as in figure 8.9 where the top state's sojourn time is chosen to
represent the amount of time that it takes to obtain the next inquiry from the inquiry
queue. It has been assumed that there is always an inquiry ready to be processed. If
this were not the case, then a random sojourn time would be used for the top state,

again this is just another possibility that the SMP model parameters would reflect.

Statistics have been gathered on GRM utilizations, waiting times, GRM arrival
stream coefficients of variation, GRM mean queue lengths (they will not be shown due to
their direct relationship to waiting times, see equation (5.3)), and the mean command

execution time.

Pr(AOD command) et the PY(COUNT command)
PT(RENOVE command) | next inquiry | Pr(RETRIEVE command)
h“
Pr{LIST
conmand)

4 y v A

) E®EEE

Figure 6.9 Connecting the commands together.

94

8.1.1.8. Model Parameter Extraction

Computation state sojourn and RAM connection times have been deduced from the
simulator code (or flowchart). Disk access time calculations are required to obtain the

first three moments of disk access (connection) times. The calculations follow:

Let there be C cylinders on the disk drive under consideration. Also use the follow-

ing notation:

A = disk access time =
time required to move the disk head, wait for
the required sector to move under the head,
and read the sector

M = time required to move the head from its_
present position to the next required cylinder

L = rotational latency seen once the required
cylinder has been arrived at

T = sector transfer time

Then A = M + L + T. Disk module connection time is A so disk I/O states have con-

nection time moments A =~. Since M, L and T are independent:

i

A=M+L+T
AT=M"+ L%+ T+ ALM+TM+LT)
T W+ [T+ TS+ 3L+ DM + (M+ DL + (M+L)TY + 6MLT
The transfer time random variable T is constant so it is obtainable from disk drive

specifications.

The rotational latency is uniformly distributed from 0 to a maximum value of T in
the environment considered here, assuming that there is negligible dependency of the
rotational position on PE inter-disk I/O computation time. Then I =T/2; L7 =T?%/3;

LT =T%4.
Consider now the disk motion time moments. Let P be the cylinder where the disk

head rests at the initiation of the disk access P~ U(1,C) (discrete) because of the ran-

dom scattering of data records over all disk structures. Let N be the cylinder to be

stepped to N ~ U(1,C) (discrete). Then the distance to be moved is]§~1‘7]. The head

95

stepping time function is shown in figure 8.10 where stepping time has been linearly

interpolated.

Let ¢, be the probability that j cylinders must be traversed, then:

4, = Pr{|P-N| = j)

1 .
T 7=0
S Pr(N = j+k) PAP = k)
==
— C—] ~ —~ —~
+ S (Pr(N=j+1c)+Pr(N=k—j))Pr(P=k) 1€;7£C-1
b o= el
c - ~
+ Z Pr(N = k-j) PP = k)
b==C -y 41
But Pr(;\7=l:)==-lc-;,kal,-'-,0, Pr(f"::k)z—é—,, E==1--,C. So a closed form

might be obtained.!

nax

nin

T § —
|-~

Figure 8.10 Disk head stepping time function.

!t has not been pursued, the mean has been found to be about C / 3 for the number of cylinders stepped.

g6

From figure 6.10, the motion time is related to the distance to be stepped as:

m(|P-N|-1) + Mo [P-N| >0
lP«NI =0

M=

Where m is the slope of the stepping time curve:

Mm-—Mm
C-2

m ==

then

_ c-1
M=09q+)Y (mk-1)+ Mua)a:

bowwl
J— C-1
M* = Z (m(k«l) -+ Mm)zqk
F==x1

aQ

-1
M¥= ¥ (m{k-1) + M o)’ 0:

md
b=m]

Which completes a randomly accessed disk access time description.

Connection times for the drives in the analysis are taken from the above calcula-
tions where parameters M ., M .., and C are taken from simulator parameters. That

is, the physical parameters are the same for both the simulation and the analysis. The
simulator remembers P from the last disk access and uses N from the accession list so

head motion simulation is realistic. The simulator maps |P - N| into M using the linear

interpolation above. The simulator uses a uniform random variable to simulate rota-

tional latency L. At the time of simulation C - 1 was inadvertently used in the slope

curve. Hence the denominator C - 1 was also used in the analysis.

Transition probabilities have been deduced intuitively from examining the program
segment flowcharts. The Bernoulli loop has been extensively employed. Command pro-

babilities have been chosen to induce a steady-state add/delete situation:

PAADD command) = P{REMOVE command) = .35,
PHRETRIEVE command) = .1

PALIST command) = .1

Pr{COUNT command) = .1

Assuming that all flights are initially half full (the simulator starts this way), they

will stay approximately half full because PH{ADD) = P{REMOVE), furthermore the simu-

97

lator initializes seats to be full/empty in an alternating pattern. These startup charac-
teristics and command fractions were chosen so that the simulator reaches a steady-state
in reasonable time. Other more sophisticated procedures could have been developed but
simulation cost would have increased without significantly increasing the validity of the

example.

8.1.1.9. Database Results

Four separate experiments have been performed. Complexity in simulating con-
current PE activity makes simulation expensive. This is an example where the analytic
approach is comparatively economical, about a factor of 15 to 20 has been seen in the
analytic verses single simulation cost, including the computation of the three bounding
solutions described in chapter 5. Each simulation has been run three times with dif-
ferent random number generators to obtain reasonable accuracy in results, so the speed
factor may actually be 45-80. Cost prohibits the compilation of confidence intervals.

Each PE executes 2000 commands in a given experiment.

The four experiments are characterized as follows:
Experiment 1 - 2 PE’s, 2 disk units, 2 global memory modules.
100 cylinders per disk, M, == 500, M ., = 2000.
80 flights, 100 seats per flight.
Experiments 2 - the same as experiment 1 except with 3 PE’s.
Experiments 3 - 2 PE’s, 3 disks, 1 global memory module.
67 cylinders per disk (to maintain the same total disk storage).
M gyp = 500, M puy == 1333,
60 flights, 100 seats per flight.

Experiment 4 - the same as experiment 3 except with 3 PE's.

The results are summerized on the following pages. Again, any parameters not discussed

have been assumed in the simulator to represent "object code” execution time.

'$1809 aseqEIEp A} 10) 500 > ‘¢

punoq preyy 9%l 90°1l 0 0 FLLY o800 00’1 F£00l1
JNS 21 95=)) ‘punog 19(9l 801 6S€0° 188 FLL] Sico L5986’ ra.iia
JAWS g1 958 punog] “dxy 161 £r'l 850 £LS1 FLLI eLI0 | SSLL AR
ujos JjNS g1 958D 19t 60°1 1680’ ILe FLLI 120° ¥Oi6 ras Y|
17575 "punogf "wina(q 651 80°1 0800 9081 FLLY 8100 9cL'0 06161
17570 "punog "uodxy 181 gil Z81°0 8€ET FLLI #i00 | ¥e90 19933
uonnjos {/H/H o9t 80t 0800 2421 FLLI 9100 03L0 8000
suni g ‘uonEnung 99°¢ 6.8°0 So¥ L £44! SLLY L1090 ¢18'0 90105

AV ¥y A AT A M ¥SId g4 HSIdy WYdg NSIdd sumn, wonmiIxy

- - s purRuIuIO)) URIN

sejnpoul NV ¢ BYsip g '8108s3301d ¢ GF rusmibdxy

o8

punoq plej] 991 601 0 0 FLLY 0500 G680 F£001
JdINS @ 1 ?s¥) "punog] "12(9Ll o1t 2500 LGY FLLL £L10°0 | T9LLO £18Cl
AINS T os%)) "punogg "dxy 132 st L1800 098 FLL] SFIOO0 | L3S9°0 8L9F1
"ajos JINS ¢ 1 958D 81 It 1500 gLy FLLY L10°0 119L°0 88$G1
17571 'punog "uidie(q L 1 2800 998 FLLY S10'0 0590 cliL¥l
1/D/5 "punog ‘uodxyg 803 91l LEV0 81 FLLI Z100 | 010 FGLLY
donnjos [/H/H 8l 1 €800 916 FLLT ¥10°0 ££9°0 9Fr IS
sunl g "uonjRinwig 95°% ¢L80 ¥S'e 939 eLLY 9100 FILO 444!
::2\- h&&«\— 25«\: EME\S M,na‘xa WVHd Msidg sl], uonnIINY
- - - purmIuIo)) UBIN
Fo[npol NV ¢ FARp ¢ sioss00id g IF niauriadxy

o9

punoq piefy 8Ll F0'1 0 1661 €00 | 6160 0L8R
JINS &1 a5 punog 1 961 S| 68F 1651 9500 £L0 9LF1l
JNS 21 98e) Tpunog dxgy 92 80°1 836 1961 9+0°0 | <090 L5Rel
‘ujos NS T'1 95D £02 901 GEe 1661 §50°0 | <10 FoLL
1/D/ punog wiisiag 98°1 <0'l €0 6£8 1581 800 | 9590 cLeet
1/D/H "punog dodxy 1T 80°1 S0 SOt 1561 0100 | 1560 F06S1
uofnjos 175 /5 102 [T} £0 668 16¢1 00 | 1190 00L¢1
sun ¢ “donrnung £e 086°0 be LsL 0561 0500 | 0390 £COFl
lald Q\d\» hﬂﬂz\» \Qﬂt\: %m.a\: \teﬁQ‘xw Wydg NsIag st f, uonnaaxsy
- - e puvmiwo)) uespy’
INpour INVY 1 8YSIp ¢ 810853361d ¢ F Jusutiadxy
putioq pizyj e 8SO'1 0 0 1661 8F00 | ¢£90 188
dINS T'1 sse)) punog 19q e L0} £50° 12 1661 V00 | B81G0 L9101
JINS T'T 95%)) "punog A%y 182 el 180" 0¥ 1591 1800 | S8F O Licti
"Ujos gy %5wg) F%3 101 £59° L7 1551 1700 | 02350 £0501
1/D/H "punog “uissiag £27 1901 £0 }8¥ 1sel | 1800 | L850 SOt
1/D/5 "putiog "todxry 08T L 50 c58 1561 2800 | <Sivo [
uonnios I/n/n 17 L0l £0 £8¢ 1561 9200 | 9LV 0 9GLIl
Bul ¢ ‘uoljpinulig 97'¢ 0060 FE4 L3¢ 0ssl 0¥0°0 | 1290 £9F 11
My A T Wy hVd M IOy dsiay HWvdg NsId4 aunj, uonnsexy

purwwo) ueapy

dnpow Wy | sysip ¢ 'siossacoid g o RUEIUTREY: 361

100

Note from the tables that the coefficient of variation for the request interarrival
time at disk drives is generally overestimated. As a result of this, the G/G/1 based
waiting time calculations overestimate queueing times (see the G/G/1 waiting time

dependence on the interarrival time coefficient of variation (4.24)).

The source of the error seen in the prediction of the coefficient of variation may be
from inaccuracies in (4.24) itself, the higher moment waiting time calculations (recall
that the first and second moments of waiting times affect the coefficient of variation of
the interarrival times, see equations (4.28 - 4.33) for details), the Bernoulli loop first
moment matching technique (as described in section 3.2), and the superposition calcula-

tions. Point process superposition and separation calculation error is addressed shortly.

Consider experiment #1. The disk waiting times are overpredicted while the RAM

waiting times are vastly underpredicted (note that Vy, 1s underpredicted). The results

are not quite as bad as they appear, there is non-negligible additive statistical error on
small waiting times that is attributable to the SIMSCRIPT IL.5 simulation language.

Waa 1s generally underpredicted, but not by as much as is indicated in the tables.

Consider next experiment #2. There are 3 PE's so GRM waiting times increase
over experiment #1 as expected. Even though disk waiting times are overestimated here
also. the mean command execution time is underpredicted using the G/G/1 results.
This is attributable to the greater underprediction in Waae and the large fraction of
RAM references compared to disk references: naag=-4531 while 5y =.0469. These
reference statistics are sufficient to ensure that the mean command execution time will

be underpredicted even though disk waiting time is overestimated.

Also noted in the SMP to ARP reduction for the database program are the follow-

ing statistics (all PE’s behave similarly):

5, = 4175, 57 = 18547
Yorase = 4.1, Y, pisx = 177
m = 203, Tf:’;,';; = 3.48x10°
So the following coefficients of variation are deduced:

Coefficient of variation for

equivalent computation state | = 3.3

101

#

Coefficient of variation for Y, pyp = 0.46

Coefficient of variation for Y, piqe = 0.325

If these coefficients are accurate (the disk connection time coefficient of variation is
quite accurate) then it may be seen that connection times are more deterministic than
exponential CDF’s describe, and the equivalent computation time is "more” random
than an exponential CDF indicates. This coefficient though is subject to the same

higher moment inaccuracies described in the Vy_ predictions.

The hard bounds apply in all cases ezcept in the GRM arrival stream coefficients of
variation. This breakdown in the hard bounds leads to the belief that some of the most
inaccurate model equations are the point process superposition and separation calcula-

tions.
If the point process mechanics were more accurate, Vi, for the hard bounds should

be smaller than the simulated value. Inaccuracies may occur because of correlation
between request interemission times not described by the ARP representation of PE
activity. (Superposition theory is constrained by the assumption of a remewal resultant
process which is not true in general.) This correlation is related to the history effects
that were briefly described in section 3.3. Dependence between request emissions intro-

duces correlation between ARP cycle times.

As is typically true of the various waiting time calculations, the G/G/1 approach
yields greater waiting time results than the two SMP calculations. The SMP and G/G/1
results may form bounds on the actual waiting times, violations will be seen in the asym-
metric example (the SMP calculations seem too inaccurate in vastly asymmetric situa-
tions). Notice from experiment #1 SMP results that when waiting times are under-
predicted, GRM utilizations are overpredicted. Also note that the SMP results for wait-
ing times are so small that the exponential bounds (which may overestimate waiting
times) may fail to hold. This seems to indicate that there is too much error in the
independent SMP waiting time calculations to be useful, especially in asymmetric situa-
tions where the results are expected to be worse due to the mean waiting time approxi-

mation (4.9 - 4.18).

102

The case 2 SMP results in this example are numerically equal to the case 1 results.

The factors Ay, , fy» are equivalent because Vy > 1.

Using the G/G/1 calculations has given execution time predictions within 6% of
the simulated value. Considering that ¢, < 0.05 (the system is disk bound because of

the single request per PE property) this error seems quite acceptable.

Regions of validity for the various approximations have not been quantitatively
defined. The G/G/1 based solution is typically accurate enough to be used in general
since the relative difference between the SMP and G/G/1 waiting time results may not
be significant in those cases where the SMP results are best. That is, in the cases where
the SMP waiting times are most accurate, the G/G/1 results are sufficiently accurate to
be used. It seems that the G/G/1 based waiting time predictions are the most robust of

the two presented in chapter 4.

6.1.2. List Merge Program

In this example P PE’s merge independent preordered lists. Each PE merges two
preordered lists contained in global memory to form a new ordered list kept in global
memory. Since all PE’s are acting on separate list elements, this is equivalent to the last
full activity phase of a parallel merge sort, at the point where half of the PE’s would

subsequently become inactive.

Instructions and local data are stored in local memory. The lists to be merged are
stored in global memory in an interleaved manner, see figure 8.11. The base address of
each list (there are two source lists and one destination list for each PE) is mapped into

GRM 1.

A flowchart of PE activity is shown in figure 6.12 while a state diagram is shown in
figure 8.13. All GRM connections constitute single word transfer times so all connection
times are deterministic with mean 1 or 10, both have been used in the experiments.
Object code execution times for computation states have been chosen so that like opera-

tions require the same execution times. Again, the simulator is a set of P list merge pro-

cessors written in SIMSCRIPT IL.5.

To obtain reasonable program execution times for comparisons, the two source lists

are taken to be 258 elements long (this choice also seems to indicate that a system

103

START

f‘

/

A\

A\

/

A\

A\

/

/

Urap
around

v/

\/
ENO

GRM 2

GRM M

Figure 6.11 List layout in GRM's.

W “*%WK«‘%X *

104

Initialize

I <= Length
ard

L denotas the source list.
Dest cenotes the destination list.
I, J, and K are indices.

J <= Length
?

Emit the remaincer
of the non-exhausted
list

Dest(K) := L(I)

I:21+1

Dest(K) := L(J)
Ji=Je+1

/

K

K+ 1

Continue

Figure 8.12 List merge flowchart.

1056

1
0.9980392
»(_ Agdress) 9 Address 14
0.001%608
Read 10 Read 15
2
Agdress) 11 Adgress 16
3
4 I
13
Compare Increment) 18
5
Cmite) s
—
Increment Increment) 19
and 7
0.5 Compare
a.s \\ Exhaust the remaining list.
')

No operation 8

Probabilities shown are for source 1ist iangtns
of 256.

Figure 6.13 List merge PE state diagram.

"steady-state” may be reached relatively quickly, a few hundred GRM references seem to

suffice in many circumstances). The simulator uses two lists of unformly distributed

random numbers that have been presorted. Under these conditions (Knu73] describes an
analysis of a merge algorithm, it is shown that the mean number of comparisons done on
the two lists before one is exhausted is 2X256 - 2 = 510. This is then the mean number]

of loop executions evident for the list merge loop. 1/510 is the appropriate Bernoulli

108

loop exiting probability used in the analysis. Since there are 512 elements in the result
list, an average of 2 must be directly obtained from the source list that was not
exhausted so the second loop (states 3-7) is executed on the average twice, its Bernoulli
exit probability is 1/2.

Since this is a relatively simple example, connection and sojourn times are simple to
obtain. Only one modeling point needs yet to be addressed: reference patterns. The list
elements are interleaved so in the steady-state (e.e., where large lists are processed) all
GRM's will be referenced equally often, hence according to the fractional argument we
set 1,.m = 1/M (* denotes any appropriate index). In an effort to examine this refer-
ence pattern approximation, simulations have been done for actual patterns generated
by the list merge program and synthetic references generated according to the model’s

fractional approximation (uniformly distributed randomly chosen GRM’s).

To verify the model on various sized systems, several configurations have been
examined. The results are shown on the next few pages for the short (Y,;m =1) and

long (Y,.n = 10) connection times with the actual and random reference patterns.

107

Short Connection Times, Actual Reference Patterns

PxM om Pm Execution Time
2x2 0.0 0.1818 11248 Simulated
0.0278 0.1808 11281 Case 1 SMP
0.0423 0.1804 11310 Case 2 SMP
0.0096 | 0.1814 11244 G/G/1
1.0 -0.2 -0.04 GJ/G/1% error
4x1 0.2506 0.6949 11760 Simulated
0.2643 0.6937 11763 Case 1 SMP
0.3040 0.6889 11844 Case 2 SMP
0.2305 | 0.6978 11694 G/G/1
-2.0 0.4 -0.6 G/G/19% error
4x2 0.1009 0.3570 11453 Simulated
0.1265 0.3553 11482 Case 1 SMP
0.1371 0.3547 11504 Case 2 SMP
0.1171 | 0.3559 11463 G/G/1
1.6 -0.3 0.1 G/G/19% error
4x4 0.0525 0.1804 11354 Simulated
0.0650 0.1706 11357 Case 1 SMP
0.0677 0.1795 11362 Case 2 SMP
0.0703 0.1795 11367 G/G/l
1.8 -0.5 0.1 G/G/1% error
8x4 0.1652 0.3531 11587 Simulated
0.1623 0.3531 11555 Case 1 SMP
0.1647 0.3529 11560 Case 2 SMP
0.2006 0.3507 11633 G/G/l
3.5 -0.7 0.4 G/G/1% error
8x8 0.0750 0.1802 11404 Simulated
0.0792 0.1792 11386 Case 1 SMP
0.0798 0.1792 11387 Case 2 SMP
0.0931 | 0.1787 11414 G/G/1
1.8 -0.8 0.1 G/G/1% error

108

Short Connection Times, Random Reference Patterns
PxM Wom Pm Execution Times
2x2 0.0 0.1818 11248 Simulated
0.0096 0.1814 11244 g}/G/l
1.0 -0.2 0.4 p.error
E 4x1 0.2506 0.6949 11760 Simulated
~ 0.2305 0.6978 11694 237/ G/1
-2.0 0.4 -0.6 Up error
4x 2 0.077 0.3583 11405 Simulated
0.1171 0.3559 11463 g}/G/l
4.0 0.7 0.5 0 errot
4x4 0.02 0.1808 11306 Simulated
0.07 0.1795 11367 ?JG/I
4.1 0.7 0.5 5 _error
8x 4 0.1641 0.3528 11584 Simulated
0.2006 0.3507 11633 {(}JG/l
3.7 -0.6 0.4 h_error
8x8 0.0696 0.1795 11392 Simulated
0.0931 0.1787 11414 G G/1
2.4 -0.4 0.2 0 error

Since the same analysis results apply here as on the previous page, SMP waiting

time results are not shown, they are as before.

109

Long Connection Times, Actual Reference Patterns
PxM Wom Pm Execution Time
2x2 2.7350 0.6164 33197 Simulated
1.0535 0.6868 20701 Case 1 SMP
1.7133 0.6573 31035 Case 2 SMP
1.4860 0.6673 30571 G/G/1
-9.8 8.3 -7.9 G/G/1 % error
4x1 26.4694 0.99C0 81735 Simulated
22.3081 1.0000 73048 Case 1 SMP
22.6679 1.0000 73782 Case 2 SMP
20.1935 1.00C0 68734 G/G /1
-17.2 1.0 -15.9 G/G/1 % error
4x2 10.1350 0.8423 48365 Simulated
6.3781 1.0000 40551 Case 1 SMP
6.6620 0.9920 41130 Case 2 SMP
NC NC NC G/G/1
-17.2 17.8 -15.0 Case 2 SMP % error
4x4 4.0892 0.5654 35979 Simulated
2.6344 0.6198 32914 Case 1 SMP
2.7437 0.6150 33137 Case 2 SMP
3.8492 | 0.5764 35392 G/G/1
-1.7 1.9 -1.6 G/G/1 9% error
8x4 12.1498 7690 52477 Simulated
11.8418 0.7892 51697 Case 1 SMP
11.9416 0.7861 51900 Case 2 SMP
NC NC NC G/G/1
-0.0 2.2 -1.1 Case 2 SMP % error
8x8 5.0920 0.5303 38061 Simulated
3.1802 0.5995 34027 Case 1 SMP
3.2035 0.5987 34075 Case 2 SMP
47424 | 0.5482 37214 G/G/1
-2.3 3.4 -2.2 G/G/1 % error

NC denotes no convergence, in this event error given is computed using the case 2 SMP analysis.

M

110

Long Connection Times, Random Reference Patterns
PxM Wi Pm Execution Time
2x2 2.4202 0.6282 32555 Simulated
1.4860 | 0.6673 30571 G/G/1
7.5 6.2 -6.1 0% error
i 4x1 | 26.4694 | 0.9900 81740 Simulated
20.1935 1.0000 68734 G/G/1
% -17.2 1.0 -15.9 9, error
4x2 9.9947 0.8478 48059 Simulated
6.6620 | 0.9920 41130 Case 2 SMP
-16.7 17.0 -14.4 % error
g 4x4 3.8029 | 0.5746 35392 Simulated
3.8492 0.5764 35392 G/G/1
0.3 0.3 0 %% error
; 8x 4 11.7522 0.7838 51682 Simulated
11.9416 0.7861 51900 Case 2 SMP
. 0.9 0.3 0.4 9% error
8x8 4.5072 0.5475 7038 Simulated
4.7424 0.5482 37214 G/G/1
1.0 0.1 0.5 %% error

111

There are several points to notice about the list merge results. First note that in
the short connection time case, a 2x 2 system self-synchronizes. This has been noted in
other 2x2 experiments not shown here. It has never been seen in systems other than
2x2's, although it is possible. Self synchronization does not occur in the long connection
time case because equivalent state 1 mean sojourn time is not sufficient to allow connec-

tions by other PE’s to be completed before the next request emission.

Secondly note that both the SMI* and G/G/1 waiting time calculations are suffi-
ciently accurate that either may be used. Reference time error is computed sncluding the
connection time because execution time error will be due to errors accrued in total GRM
use time more directly than just waiting times. It is inappropriate to base error measure
on a possibly small quantity (notice the magnitude of the waiting times for the short
connection time case where the connection time is 1, they are very small). Hence error
in GRM queueing times will include the connection time as:
Wom + Vom)ese = (Wom + Vym)m

(Wom + Yrm)om

%Error == X 100%

In the short connection time‘ case, the range of execution time error is +1% {com-
puting error of the analytic prediction verses the simulated value). In the long connec-
tion time case, execution time error ranges from -16% to +1%. Note that in the long
connection time case the G/G/1 waiting time based solution failed on compressor sys-
tems (P > M). It produced waiting time predictions that oscillated between extremes as

the fixed point iteration proceeded. In this case the SMP based results were used.

Finally note that in both the actual and synthetic reference patterns, nearly the
same simulated results were obtained. This fact supports the applicability of using refer-

ence fractions as time invariant probabilities.

The poorest performance of the waiting time calculations is present in compressor

systems. This is expected because these systems display the most coupling between the

processes {Zp (¢), t 2 0}. This may be qualitatively seen by considering extreme cases: if
there is one GRM, all PE's contend over it, thereby creating coupling between SMP’s at
time ¢; only one SMP may be in a GRM use state (connection phase) at time ¢. This
exclusion influences the time limiting system state occupation probabilities. System

state probabilities are not appropriately represented by simple products as in (3.3). The

T prmamapssin]
1 P

112

assumption that Poisson time statistics apply at emission times is inaccurate due to
coupling.

At the other extreme, when there are a large (infinite) number of uniformly used
GRM'’s, there will be negligible coupling between SMP’s because they rarely interact in a

temporal manner through GRM queueing; each may achieve its potential.

8.2. Synthetic Experiments

Three sets of results will be shown. The first set of data concerns a correlation test
experiment where two simple loops with different characteristics are executed in an alter-
nating sequence to determine the applicability of me = me and the Bernoulli loop

approximation.

The second set of data examines an asymmetric example where each PE behaves as
an ARP with highly asymmetric behavioral characteristics. The ARP description was
chosen for its simplicity and the idea that fixing some stochastic properties while others

are being studied aids interpretation of the results.

The third set of data shown here was generated by [Bha73]. It will be used to
examine the applicability of the SMP model's physical analysis in a highly discrete
environment. Differences in queueing disciplines should be evident here in that many of
the previous models of memory interference — of which [Hoo77] is a good example -- are
based on a "random request selection” priority whereas the SMP physical analysis shown
in chapter 4 is based on the FCFS discipline. The SMP model physical analysis does not

include terms representing the occurrence of simultaneous events.

8.2.1. Simple Correlation Tests

Consider the state diagram shown in figure 8.14. Two loops consisting of computa-
tion and reference states are executed in sequence (repeatedly as state 5 provides a tim-
ing base for cycle time examination). The number of times each loop is executed is con-
stant and is given by L, and L, respectively. That is, the simulator executes the states
1 and 2 exactly L, times and then proceeds to execute states 3 and 4 L times. After
completing the two loops it starts over again. All computation state sojourn and con-

nection times are deterministic, this is often the most difficult case of CDF choices to

113

handle accurately using a "continuous time” description that the G/G/1 equations exem-

plify.
To check those effects believed to be important, the connection times for state 2

and 4 are different and the lcop counts are also different.

ovmoutas o

times

Synthetic state S
(zers sojourn time)

Figure 6.14 Simple correlation test PE state diagram.

114

Following are correlation test results, all simulated results are the average over
three runs. Reference patterns are uniform over all GRM’s, remaining parameters are

also symmetric across all PE’s and GRM’s.

Example 1:
Sy =10, Ss=20
Yam = 5.0, Yym =10
L 1 ™ 500, L n = 100
Example 2:
S, = 1.0, S,s=1.0
Yem = 100.0, Youm = 1.0
L 1 = 1, L g =
—— - t
PXM W, Pm C, 55 !
2x2 1.115 | 0.6554 | 3968 | Simulated
573 | 0.7135 | 3644 | Case 1 SMP
887 | 0.6785 | 3832 | Case 1 SMP
938 | 0.6731 | 3863 G/G/1
4x4 1.8769 | 0.5886 4408 Simulated
1.3193 | 0.6203 | 4192 | Case | SMP
1.3600 | 0.6159 | 4221 | Case 2 SMP
1.9210 | 0.5711 | 4553 G/G/1
Example 1
8x8 2.2653 | 0.5589 | 4662 Simulated
1.6292 | 06078 | 4278 | Case 1 SMP
1.6397 | 0.6060 | 4284 | Case 2 SMP
2.3685 | 05507 | 4721 G/G/1
16 x 16 | 2.4498 | 0.5458 4775 Simulated
1.7560 | 0.5072 | 4354 | Case 1 SMP
17584 | 0.5970 | 4355 | Case 2 SMP
25350 | 0.5392 | 4822 | G/G/1 |
2x2 21.7 0.6905 146 Stmulated
21.0 | 06879 | 147 | Case 1 SMP
23.7 | 06714 | 150 | Case 2 SMP
326 | 0.6004 | 163 G/G/1
4x4 34.4 0.5870 170 Simulated
328 | 05085 | 169 | Case 1 SMP
33.0 0.5669 169 Case 2 SMP
42.3 | 05383 | 188 G/G/1
Example 2
8x8 40.4 0.5474 185 Simulated
38.1 0.5635 179 Case | SMP
381 | 0.5632 | 179 | Case 2 SMP
482 | 0.5062 | 200 G/G/1
16x16 | 445 | 05223 | 197 Simulated
416 | 05419 | 186 | Casel SMP
41.6 0.5418 188 Case 2 SMP
60.2 | 0.4519 | 224 G/G/1

115

Results seem to indicate that the Bernoulli loop approximation is sufficient for first
moment predictions. The waiting time average from the simulator is W,, accumulated
during the simulations, it is not me . The cycle time simulated should reflect inaccura-
cies induced by the state dependence, if it is not detectable from state cycle times, then
it is sufficient to use Wp,,.. The second example does display cycle time error that may
be attributable to imaccuracies in the state independence approximation the error is not
excessive. Contrary examples might be devised but in typical circumstances the state

invariant waiting time calculations seem sufficient.

68.2.2. Asymmetric Tests

In this example PE's behave as ARP’s with vastly different behavior characteris-
tics. The example was chosen to display errors in the waiting time calculations in a sys-

tem whose behavior is difficult to predict accurately.

Since systems with P > M are most difficult to handle accurately, the example con-
siders a 7x4 system. To check asymmetric calculations, some PE’s "prefer” a certain
GRM, in particular one PE uses exclusively one GRM. This preference was chosen to
check the dependence of a PE’s waiting time on its own use of the GRM, i.e., the depen-

dence of Wm on p,, . In this case, PE 5 uses only GRM 1.

CDF's have also been varied between experiments, the following CDF's have been

used: deterministics; exponentials and Erlangs; and uniform CDF's.

Threshold schemes have also been changed and the calculations done for two thres-k
holding (requestor counting) schemes: the one described by equations (4.12) and (4.13);
“and a simple scheme [Q;, | = |#,,|. Parameters and results are shown on the next few
pages.

For all three test cases, the GRM reference matrix is:

" 118

00 05 025 025

p
0.0 00 05 0.5
0.1 0.2 03 0.4
7 = 0.4 03 02 0.1

1.0 00 0.0 0.0

0.2 05 01 0.2

0.7 02 005 0.05

The first case equivalent connection time CDF’s are given by:

. E(98,8) E(69,8) E(48, 3)
| | E(28,3) E(90,10)
E(98,7) E(76,5) E(23,8) E(82,5)
Y(t) = E(94,9) E(20,5) E(58,3) E(78,4)

E(97,8)
E(57,4) E(45,10) E(853) E(11,1)
E(42,10) E(18,8) E(24,2) E(91,5)

E(a,x) denotes an Erlang CDF, with mean « and « stages of exponential service.

117

In cases 2 and 3, the following connection time CDF’s apply:

n3---~~-—----——>~
u(t-98)
P
u(t-968) u(t-76)
Y'(t) = u(t-94) u(t-20)
ﬁ(t-97)
u(t-37) ut-45)
u(t-42) u(t-18)

u(t) is the unit step function: u(¢t<0) = 0, u(¢t>0) = 1.

(t-69) u(t-46)
u(t-28) u(t-90)
u(t-23) u(t-32)

(t-58) u(t-76)

u(t-85) u(t-11)
u(t-24) uft-91)

The state 1 (equivalent) computation time CDF’s are given by:

Case I, State 1 Case 2, State 1

p U(29,83) E(58,1)

E(23,4) E(23,1)

E(57,9) E(57,1)

S(1) = U(25,37) E(31,1)
U(30,95) E(62.5,1)
U(55,88) E(61.5,1)

E(19,2) E(19,1)

U(a.8) denotes a uniform distribution between a and 4.

Case 3, State 1

B

u(t-58)
u(t-23)
u(t-57)
u(t-31)
u(t-62.5)
u(t-81.5)
u(t-19)

Case 1 is composed of Erlang and uniform CDF'’s; case 2 is composed of exponential

computation times and constant connection times; case 3 displays only deterministic

computation and connection times. The results are shown next.

Case 1: Simulated and G/G/1 results

Thresholding is given by {4.12) and (4.13).

GRM1 GRM2 GRM3 GRM¢4

14.4 10.9 65.8 Simulated
PE 1 19.4 10.8 92.4 G/G/1 Soln.
4.4 0.1 23.8 % error
11.5 4.7 Simulated
PE 2 15.5 29.7 G/G/1 Soln.
10.7 4.0 % error
128.8 31.7 14.8 50.9 Simulated
PE 3 | 1449 37.2 14.6 52.8 G/G/1 Soln.
7.2 5.1 -0.5 1.4 9% error
105.6 37.3 13.4 67.7 Simulated _
PE 4 | 97.4 35.9 11.6 95.8 G/G/1 Soln. | W,,
: -4.1 -2.4 -2.5 19.6 7% error
78.8 Simulated
PE5 | 75.8 G/G/1 Soln.
-1.7 0% error
) 131.8 32.3 14.5 T4.4 Simulated
PE6 | 150.2 34.4 13.2 108.1 G/G/1 Soln.
E 9.7 2.7 -1.8 39.5 %% error
115.1 38.9 17.5 74.8 Simulated
PE7 | 113.2 36.2 14.8 102.2 G/G/1 Soln.
- -1.2 -4.7 8.5 16.5 77 error
.9699 9973 .3990 7930 Simulated
9724 5712 3824 7682 G/G/1 Soln. Oom
: -0.3 -4.4 -4.92 -3.1 %% error
73.3 56.3 | 382 72.4 Simulated _
67.2 49.5 38.2 71.9 G/G/l Soln. X,
-8.3 -12.1 0.0 0.7 o, error
0132 .0106 0104 .0110 Simulated
0132 | .0103 .0100 .0106 G/G/l Soln. A
0 -2.8 -3.8 -3.6 7% error
697 .824 1.06 647 Simulated
672 805 799 793 G/G/1Soln. | Vi
-3.6 -2.3 -24.6 22, 9% error

119

Case 1: SMP case 1 and case 2 results

Thresholds are given by (4.12) and (4.13).

GRM 1 GRM2 GRM3 GRM¢4
13.9 10.0 41.4 SMP case 1 |
PE 1 13.8 10.0 41.8 SMP case 2
11.5 23.6 SMP case 1
PE 2 11.2 22.8 SMP case 2
75.0 26.6 13.4 31.5 SMP.case 1
PE 3 | 78.3 26.6 13.7 32.7 SMP case 2
52.2 29.0 10.9 40.7 SMP case 1 | __
PE 4 | 54.3 29.0 10.8 40.9 SMP case 2 W,,,,
44.6 SMP case 1
PE 5 | 45.0 SMP case 2
78.0 25.1 12.5 41.5 SMP case 1
PE6 | 81.8 25.2 12.5 42.0 SMP case 2
48.7 28.9 14.0 40.6 SMP case 1
PET7 | 585 29.1 14.0 40.8 SMP case 2
1.0 (1.20) 66073 4373 .8682 SMP case |
1.0 {1.18) | .6558 4359 8662 SMP case 2 Pm |
67.2 49.5 38.2 719 SMP case 1 _
67.2 49.5 38.2 71.9 SMP case 2 |
.0170 0124 .0114 .0120 SMP case 1
.0165 0122 .0114 .0120 SMP case 2)\L_
.881 .980 .846 .866 SMP case 1
.819 968 843 .863 SMP case 2 VA}"‘
-3.6 -2.3 -24.6 22.6 9% error

Error has not been computed due to the clear inaccuracies when compared to the
G/G/1 based waiting time predictions. Parenthesized utilizations are those that result
from using utilization equations with the solution waiting times, clearly the waiting

times are too small in these cases so the actual utilization predictions should be 1.0.

120

Case 2: Simulated and G/G/1 results

Thresholds are given by (4.12) and (4.13).

GRM1 GRM?2 GRM3 GRM¢4
15.3 9.3 62.0 Simulated
PE 1 17.3 78 87.4 G/G/1 Soln.
1.8 -1.9 23.5 07 error
10.2 32.4 Simulated
PE 2 12.9 33.5 G/G/1 Soln.
, 7.5 0.9 9% error
1263 | 30.6 124 9.3 Simulated
PE3 | 1447 | 33.2 11.3 48.0 G/G/1 Soln.
i 8.3 2.4 -3.1 -1.0 9% error
102.0 34.0 11.7 64.3 Simulated .
PE4 | 90.8 32.0 9.3 91.1 G/G/1 Soln. | W,y
-5.7 -3.7 -3.4 19.1 9% error
82.4 Simulated
PES5 | 69.3 G/G/1 Soln.
-7.3 % error
126.2 28.8 127 66.4 Simulated
PE 6 149.9 29.6 10.5 103.6 Cale
12.9 1.1 -2.8 48.1 % error
114.2 35.2 15.2 68.5 Simulated
PE 7 106.8 32.1 11.7 g G/G/l Soln.
-4.7 -5.8 -3.9 18.3 9% error
9713 6025 .4062 8053 Simulated
1.000 | .5835 | .3937 7944 | G/G/1Soln. | pm
3.0 -3.2 3.1 -1.4 9% error
73.2 55.9 38.2 72.2 Simulated _
67.2 9.5 38.2 71.9 G/G/1 Soln. | X,
-8.2 -11.4 0 -0.4 7 error
0133 .0108 .0106 0112 | Simulated
0137 0105 .0104 .0109 G/G/l Soln. A
3.0 -2.8 -1.9 -2.7 9% error
.630 846 | 1.02 628 Simulated
669 822 .789 788 G/G/1 Soln. | Vi
6.2 -2.8 -22.6 25.5 %% error

121

Case 2: SMP case 1 and case 2 results

Thresholds are given by (4.12) and (4.13).

GRM 1 GRM2 GRM3 GRM¢4
11.7 74 36.1 SMP case 1
PE 1 11.6 7.5 36.5 SMP case 2
9.2 18.9 SMP case 1
PE 2 8.9 18.2 SMP case 2
68.4 22.7 10.5 27.3 SMP case |
PE3 | 715 22.7 10.8 28.4 SMP case 2
47.5 24.8 8.5 35.4 SMP case 1 | __
PE 4 | 49.3 24.7 8.7 35.8 SMP case 2 | W,,
40.9 SMP case 1
PE S5 | 41.2 SMP case 2
71.3 21.2 10.0 36.0 SMP case 1
PE6 | 74.8 .1 10.0 36.4 Calce
44.4 24.7 11.1 35.3 SMP case 1
PE7 | 53.0 24.8 11.1 35.4 SMP case 2
1.0 (1.24) | .6784 4507 .8970 SMP case 1
1.0 (1.22 6737 4494 .8949 SMP case 2 P |
67.2 49.5 38.2 71.9 SMP case 1 -
67.2 49.5 38.2 71.9 SMP case 2 | X, |
.0176 0128 0118 0124 SMP case 1
0171 0126 .0118 0124 SMP case 2 Ag]
.899 979 .830 .846 SMP case 1
.840 967 826 844 SMP case 2 | V\i

ll 122
Case 3: Simulated and G/G/1 results

Thresholds are given by (4.12) and (4.13).

GRM1 GRM2 GRM3 GRM¢4
12.2 8.4 61.1 Simulated
PE 1 17.0 7.6 86.9 G/G/1 Soln.
4.4 -1.0 24.1 9% error
9.75 32.3 Simulated
PE 2 12.7 32.9 G/G/1 Soln.
8.1 0.5 9% error
126.2 28.1 12.3 48.8 Simulated
PE3 | 1436 32.4 11.0 47.5 G/G/1 Soln.
7.8 4.1 3.7 -1.0 9% error
103.2 32.1 10.3 63.3 Simulated -
PE 4 | 90.1 31.0 9.0 90.7 G/G/1 Soln. | W,
‘ -5.6 -2.1 -1.9 19.7 9 error
87.3 Simulated
g PE5 | 70.6 G/G/1 Soln.
" -9.1 %% error
130.0 30.5 12.8 70.5 Simulated
N PE 6 148.7 29.0 10.3 103.3 Cale
-10.0 -2.0 3.2 2 % error
. 104.9 33.9 16.1 63.9 Simulated
PET | 97.9 31.1 11.5 97.0 G/G/1 Soln.
’ -4.8 -5.4 -11.5 17.8 9% error
9723 6115 .4087 8072 Simulated
1.00 .5862 3954 .7988 G/G/l Soln. Pom
2.8 -4.1 -3.3 -1.0 % error
74.5 56.1 38.1 72.4 Simulated _
67.2 19.5 38.2 71.9 G/G/1 Soln. | Xa.
-90.8 -11.8 0.3 0.7 %% error
0134 .0109 0104 0112 Simulated
0139 .0106 .0104 .0110 G/G/l Soln. A
3.7 -2.8 0 -1.8 9% error
619 a7 991 604 Simulated
647 795 T2 768 G/G/1Soln. | Vi}
4.5 2.3 -22.1 27.2 9% error

123

Case 3: SMP case 1 and case 2 results

Thresholds are given by (4.12) and (4.13).

GRM 1 GRM2 GRM3 GRM¢4
1.7 7.4 36.0 SMP case 1
PE 1 11.6 7.4 36.4 SMP case 2
9.1 19.0 SMP case |
PE 2 8.9 18.1 SMP case 2
67.9 22.6 10.5 27.2 SMP case 1
PE3 | 71.3 2.7 10.7 28.4 SMP case 2
47.0 24.6 8.5 354 SMP case 1 | __
PE 4 | 49.1 24.7 8.6 35.6 SMP case 2 | W,,
40.5 SMP case 1
PE S | 41.0 . SMP case 2
70.7 21.0 9.9 35.9 SMP case 1
PE6 | 74.6 22.0 10.0 36.4 SMP case 2
43.3 24.5 11.0 35.2 SMP case 1
PET7 | 52.6 247 11.1 35.4 SMP._case 2
1.0 (1.24) | 6793 | .4512 8980 | SMP case 1
1.0 (1.22) | .6741 .4497 .8955 SMP case 2 fn |
67.2 49.5 38.2 71.9 SMP case 1 _
67.2 49.5 38.2 71.9 SMP case 2 | X,
0177 .0128 .0118 .0124 SMP case 1
0172 .0126 .0118 .0124 SMP case 2 Az |
.830 955 813 .829 SMP case 1
.799 .939 807 .825 SMP case 2 | V7

124

Case 1: Simulated and G/G/1 results with @,, = #,.

GRM1 GRM?2 GRM3 GRM¢4
14.4 10.9 65.8 Simulated
PE 1 19.8 10.8 88.3 G/G/1 Soln.
4.8 -.1 20.1 %% error
11.5 34.7 Simulated
PE 2 15.5 4.3 G/G/1 Soln.
10.7 7.7 9% error
4 128.8 31.7 14.8 50.9 Simulated
PE 3 | 216.7 37.4 14.4 51.7 G/G/l Soln.
39.1 5.3 -1.1 0.6 % error
» 105.6 37.3 13.4 67.7 Simulated .
PE4 | 1008 | 427 | 116 o1 | G/G/1Soln. | W,
L -2.4 9.4 -2.5 16.3 9% error
78.8 Simulated
PE5 | 76.7 G/G/1 Sol.
-1.2 % error
131.8 32.3 14.5 74.4 Simulated
PE6 | 2241 | 34.0 13.2 1021 | G/G/1 Soln.
48.9 2. -1.6 32.4 7 error
115.1 38.9 17.5 74.8 Simulated
PE7 | 1079 | 429 14.7 96.2 G/G/1 Soln.
4.6 6.6 -8.7 12.9 %% error
.9699 5973 .3990 7930 Simulated
.9631 8597 3750 7514 G/G/1 Soln. Pm
-0.7 -6.3 -6.0 _-5.2 9% error
73.3 56.3 38.2 72.4 Simulated _
67.2 49.5 38.2 71.9 ((;}/G/l Soln. X
-8.3 -12.1 0.0 0.7 Y0 error
.0132 .0106 .0104 0110 Simulated
0131 | 0100 | .0098 0103 | G/G/1Soln. | XJ
-0.8 -5.7 -5.8 -6.4 9% error
697 .824 1.06 647 Simulated
704 838 818 817 G/G/1 Soln. | Vi
1.0 1.7 -22.8 26.3 % error

125

Case 2: Simulated and G/G/1 results with g,, = #,,

GRM1 GRM2 GRM3 GRM¢4

15.3 9.3 62.0 Simulated
PE 1 17.6 738 83.2 G/G/1 Sola.
2.0 -1.9 19.6 % error
10.2 32.4 Simulated
PE 2 13.0 317 G/G/1 Soln.
7.7 4.3 9% error
126.3 30.6 12.4 49.3 Simulated
PE 3 216.4 334 11.1 46.9 G/G/l Soln.
40.5 2.6 -3.7 -1.8 % error
1020 | 34.0 1.7 64.3 Simulated _
PE4 | 92.0 38.2 9.3 86.2 G/G/1 Soln. | W,,
-5.4 7.8 -3.4 15.6 % error
82.4 Simulated
PE5 | 70.5 G/G/1 Soln.
-6.6 % error
126.2 28.8 12.7 66.4 Simulated
PE6 | 2237 | 29.3 10.5 973 G/G/1 Soln
53.2 0.7 -2.8 39.9 % error
114.2 35.2 15.2 68.5 Simulated
PE7 | 1016 | 383 11.7 915 G/G/1 Sola.
-8.1 5.8 -89 14.4 % error
9713 6025 .4062 8053 Simulated
9934 | 5718 | 3866 | 7774 | G/G/1Soln. | p,
2.3 -5.1 -4.8 -3.5 % error
73.2 55.9 38.2 72.2 Simulated _
672 | 495 | 382 719 | G/G/1Soln. | X,
-8.2 -11.4 0 -0.4 % error
0133 .0108 0108 0112 Simulated
.0136 .0103 .0102 0106 G/G/l Soln. A
2.3 -4.6 -3.8 -5.4 % error
.630 .846 1.02 .628 Simulated
.696 854 .806 810 G/G/1 Soln. | Vii
10.5 0.9 -21.0 29.0 % error

128

Case 3: Simulated and G/G/1 results with @, = #,.

GRM1 GRM?2 GRM3 GRM¢4

12.2 8.38 61.1 Simulated
PE1 17.4 7.6 82.6 G/G/1 Soln.
4.7 -1.0 20.1 9% error
9.75 32.3 Simulated
PE 2 12.8 37.1 G/G/1 Soln.
8.5 3.9 % error
126.2 28.1 12.3 48.8 Simulated
PE 3 | 2148 32.7 11.0 46.4 G/G/1 Soln.
39.9 4.4 -3.7 -1.8 % error
103.2 32.1 10.3 63.3 Simulated —
PE4 | 91.3 37.1 9.1 85.7 G/G/1 Soln. | W,
-6.0 9.6 -1.8 16.1 % error
87.3 Simulated
PES5 | 71.9 G/G/1 Soln.
-8.4 % error
130.0 30.5 12.8 70.5 Simulated
PE6 | 2220 28.7 10.3 96.8 G/G/1 Soln.
-49.2 -2.4 -3.2 32.3 % error
104.9 33.9 16.1 68.9 Simulated
PE7 | 93.4 37.2 11.4 90.7 G/G/1 Soln.
-7.8 6.4 11.7 13.6 % error
9723 6115 .4087 8072 Simulated
1.001 5745 .3883 7815 G/G/1 Soln. Pm
2.8 -6.1 -5.0 -3.2 %% error
74.5 56.1 38.1 72.4 Simulated _
67.2 49.5 38.2 719 G/G/1 Soln. X
-9.8 -11.8 0.3 0.7 % errot
0134 0109 .0104 0112 Simulated
0138 | 0104 | .0102 0107 | G/G/1Soln. | X}
3.0 -4.5 -1.9 -4.5 %% error
619 177 .991 604 Simulated
673 826 .788 790 G/G/1Soln. | V)i
8.7 5.9 -20.5 30.8 % errot

127

When the thresholding scheme is Q,, = #,,, the G/G/1 results are poor when
compared to the results obtained when using the thresholding scheme in (4.12) and

(4.13).

8.3. Comparison with a Previous Synchronous Model

Consider a P X M system where each PE’s behavior is represented by an ARP with
constact, unit valued, computation state sojourn and connection times. Requests are
directed uniformly over all GRM's. The table shown below displays results from the
SMP model and the results from [Hoo77], the simulated confidence interval is from

[Bha73] as shown in [Hoo77)].

Px M Om 90 % Con. Int. From SMP model
[Hoo77]

4X4 .4463 4549, .4569 4480 G/G/1
4588 SMP case |
.4569 SMP case 2

4 X8 .2360 2391, .2406 2377 G/G/1
.2392 SMP case 1
.2390 SMP case 2

8 X 4 7167 7115, .7302 7447 G/G/1
.7864 SMP case 1
.7840 SMP case 2

§xX8 4334 .4320, 4418 .4403 G/G/l
.4508 SMP case 1
.4504 SMP case 2

The results are comparable even thought the physical analysis done in chapter 4
does not include effects due to synchronous events such as request collisions. Note that
the results are tolerant of the different queueing disciplines that were used, in [Hoo77] a
random service priority was assumed — the simulation data represents this situation.
The physical analysis in chapter 4 assumed a FCFS service discipline but the difference
in results is small. This is to be expected (approximately) because mean queueing times
are independent of work conserving and non-job dependent service priorities in ideal,
open queueing stations [GrH74]. The effects here are comparable although different ser-

vice disciplines may not yield ezactly the same mean waiting times because of depen-

128

dence on higher moments (which are affected by the queueing discipline). For example,
since different service disciplines affect second moments of queueing times, the coefficient
of variation of queue interarrival times is affected by service disciplines, which in turn
affects the mean queueing times (4.24). The service discipline might be neglected or

a,sumed to be FCFS because of the mean value approximate equivalence.

6.4. Conclusions

Experimental data has been shown for many system configurations. The accuracy
of the model calculations described in chapters 3 through 5 have been found to be accu-
rate. Considering the complexity of the problem, the accuracy is quite acceptable. It is
believed that enough experimental data has been shown to establish the model calcula-

tions as reasonably accurate.

By considering data from both the independent SMP and the G/G/1 calculations
for waiting times it may be concluded that the G/G/1 calculations seem to give the best
consistent set of predictions. They work well in both asymmetric and symmetric situa-
tions, they do fail to converge in compressor systems with high GRM utilizations. In
these cases, the independent SMP waiting time calculations may be used with reasonable

success.

CHAPTER 7

A CACHE MODELING EXAMPLE

This chapter describes a processor/cache memory model. A simple instruction exe-
cution atom is formed that may be used in further program modeling efforts; such as in
describing subprograms, etc., when program segments may be parameterized in terms of
instructions as atoms. The cache model is appropriate for systems where instructions
and data are stored in global memory and local cache memory is associated with each
processor. Note that a shared, circuit switched, bus with global memory attached to it
behaves as a single GRM. Hence the analysis described here applies directly to simple

single shared bus systems with distributed caches.

Parameters of the model include: the fraction of memory references that fetch
instructions, the fraction that fetch data; the fraction of instructions that read operands,
the fraction that write results, etc.; cache memory hit ratics; and firmware execution

timing statistics.

The performance measure of primary importance is the mean instruction execution
rate. Utilizations may be used to show that, for example, there is enough GRM utiliza-
tion not used by processors for system devices not included in the processor set, such as
/O channels that use global memory. Utilizations are not primary in describing system
operation speed. 1/O channels may be included in the system model if the system
evaluator designates appropriate device activity descriptions. If all active devices are
included in the model, utilizations become secondary in importance. The model descrip-

tion will be pursued, solutions are not sought.

129

130

7.1. PE Cache Memory Organization

With each processor will be associated a cache memory which stores local data
(that is allowed to be cached) and PE instructions, see figure 7.1. The finite capacity of
PE cache memory may require cache content swapping. The memory management unit
examines addresses generated by processor hardware and does any virtual memory trans-
lation and cache or global memory request control required. Virtual memory behavior

will be ignored in this chapter.

Processors fetch instructions from local cache memory or from global memory when
a cache miss occurs. Data references made by processors are either directed toward
cache memory or are directed to global memory when: data from global data structures
i3 not allowed “o be cached, as in the case of global data structures; or when the con-
tents of the referenced location are not presently contained in cache memory. A global
cache memory (i.e., one cache that is used by all PE’s), could be modeled using a subset
of the GRM's. The reference pattern parameters (n,,,) may be used to model such con-

figurations.

s ~ S SRR S) global memoary
system

Figure 7.1 Processor/cache configuration.

—

s

e

131

Consider cache content replacement policies. The term "write-through” pertains to
the cache maintenance policy where any memory write operation takes place in cache (if
the referenced word is contained in cache) and global memory. Hence a write "through”
the cache takes place. If the referenced word is not in cache, then a write operation will
take place only in global memory, no line fetch or replacement will be done, see [Smi82].
In this case any line in cache may be found in an identical form in global memory. In a
multiprocessor, this property may only be obtained if the cache coherence problem is
solved in some manner. It will be assumed that data is tagged as cacheable or non-
cacheable, and non-cacheable data may only be stored in global memory, so the

coherency problem will not be important.

Another maintenance policy also considered will be termed "copy-back” [Smi82]. In
this policy, cache lines needing replacement upon cache misses are copied back into glo-
bal memory before new lines take their position in cache (there may certainly be some
fetch overlapping in the physical implementation, hence bounds may be the only obtain-
able results, see the later discussion). Processors write cacheable data only into cache.
Furthermore, if the referenced word is not in cache at the time, it will be read into cache
before the write proceeds (the write into cache may actually take place concurrent with
the cache line load, such details will be ignored in this example). This policy causes one
or two global memory transfers to take place upon a cache miss: one if the line to be
replaced has not been modified since being read into cache, its image exists in global
memory so it need not be copied back; or two when the line to be replaced has been

modified since being read into cache, its image in global memory is no longer valid.

When a line is fetched from global memory by the memory management unit L
words are moved at a time, this group of words is called a cache line (appropriate read
through to the processor might be done). This line fetch may be done in many ways in

the context of the memory system considered.

In the two extremes considered here, a line may be moved in a single circuit
switched connection to an appropriate GRM, or a line may be moved with one request
sent to L GRM’s (of which there may be kL, k£ an integer) for a single word transfer
to/from each GRM simultaneously. These two forms of line transfers will be termed line

fetching and scatter fetching respectively. An interesting use of the model is the com-

132

parison of these two techniques for implementing cache/global memory interactions.

Appropriate instruction execution atoms are shown in figure 7.2. Entries to state
1 designate the initiation of new instructions, hence the mean time between entries to

state 1 (Eﬂu) represents the mean instruction execution time for a given PE.

For the purposes of this example, consider the processor to be a one address
machine so that associated with an instruction execution is at most one data reference.
More elaborate instruction ezecution models may be developed based on a particular pro-
cessor design. For example, multi-memory operand instructions could be modeled by

associating with a sequence of k global memory references, k reference states in the PE

Case 1: Scattar feton, write-through

Instruction Irstruction
Fetan Fetan Clobal sata Sats Dats Oata
reference Read Read vrite
cache Nt Cache mise Cache hit Cache niss (write
(read inger.) through)

® ©

Figure 7.2 PE descriptions.

133

Case 2 Scatter fetch, copy-back

Instruction Instruction Instructd,
Feton Fetoh Fetch Clobal deta Oata Oata Sata

refarence reference Tefarence referance
Caohe Nt Cache nise Canhe niss ‘. it Cache niss Cache miss
(replecenent))i (reed line) ol) (reea)

® ®

Q)

Figure 7.2 (continued)

134

Case 3: Line fetch, wvrite-through

Initiate
Instruction
Exscution

i y) ¥

— o) [) \
dlobal aata lata deta g

[Faton Fatch Farch {, reterance T Ieference refersnce {.
cache Mt tache niss tache iz cacne nit cache itz |
(Teplacenent) (reea 1ine)) |) - ((replacenent)

® |\o /1 ®

Figure 7.2 (continued)

state diagram. A different instruction execution diagram for each basic type of instruc-
tion available could be drawn and weightings could be assigned to each branch (from an

instruction fetch state for example) according to their relative occurrence frequencies.

The required statistics used for instruction execution modeling might be compiled

using appropriate benchmark programs executed on a uniprocessor. See figure 7.5.

7.2. Parameters of the PE Actlvity Model
PE state diagrams are shown in figures 7.2 and 7.3 for the two possible replacement
policies considered here: write-through; and copy-back. The mean system instruction

execution rate is given by:

135

. . . P
System instruction execution rate = —

Cpll

The parameters are:

hy = instruction hit ratio
hp = data hit ratio for cacheable data items
rr = instruction reference ratio, i.e.,

the fraction of processor memory references
used to fetch instructions

'p = data reference ratio, i.e.,
the fraction of memory references used to access data
=] ~ re
r = the replacement fraction, i.e.,

the fraction of cache writes that cause
a copy-back to occur

fro = fraction of data references that are reads

Furthermore, divide rp into two distinguishable subfractions rp, and rp,:

fraction of data references that pertain to noncacheable (global) data items

rDG =
o, = fraction of data references that pertain to cacheable data items
™D = rp, + o,

The above fractions will be used as probabilities, this is similar to the use of

instruction occurrence frequencies as probabilities.

Again, two replacement policies will be used: write-through, where upon writing
into cache,.the memory management unit also writes into the appropriate location in
main memory; and copy-back, where lines are copied to global memory if they need to

be replaced and have been modified since being read into cache.
Therefore, four cases arise:

Case 1 - Scatter fetching with write-though replacement.
Case 2 - Scatter fetching with copy-back replacement.
Case3 - Line fetching with write-through replacement.

Case4 - Line fetching with copy-back replacement.

138

Scatter fetching is easily modeled accurately if all global memory references are
based on a line reference. (This may be realistic if hardware only allows this type of
data transfer.) That is, each time a GRM reference is made, a request is emitted simul-
taneously for all GRM's. Simultaneous emission of requests for all GRM's ensures GRM
queue length equality for all points in time. This allows a reduction to be done in that
the GRM system may be logically replaced by a single GRM.! Hence, in the model

domain, a P X 1 system is used if M = L.

In the line fetching cases, the memory management unit emits a request for one of
M GRM’s to obtain a connection to transfer either: one or two lines of words when line
transfers are required; or a single memory word move for a global data word transfer or

write-through operation.

7.3. Transition Matrices and Bounds

Transition matrices and bounding schemes are detailed for the four cases. Sojourn
and connection times are given by hardware timing specifications and the line length L.

The cases are described next:

L1f a single GRM request is emitted when a single data item is moved, then using the scatter fetch assumption pro-
vides an upper (depending on the fraction of single references to total references the bound may be close to the solution
value} bound on mean instruction execution time. This approximate upper bound will be discussed hereafter.

137

Case 1 - Scatter fetching with write-through replacement.

P, =
0k n(=hy) (e)(erp) (ordeo o ko (1-rrXi-fao)rp, O (1-rrlfro o, (1-hp)
10 0 0 0 0 0 0
10 0 0 0 0 0 0 :
o0 0 0 0 0 1 0 |
"0 0 0 0 0 1 0
oo 0 0 0 0 1 0 |
0y 1-h 0 0 0 0 0
"o 0 0 0 0 1 0

Within the transition matrices, products of probabilities or their complements may
be interpreted as joint probabilities so that r, & = Pr{an instruction reference is made
and a cache hit occurs). The derivation of transition probabilities is relatively straight-

forward.

When computing the mean instruction execution time bounds may be ascertained
in a straightforward manner, whereas accurate p;'edictions are more difficult to obtain.
Since this is only an example and is not intended as a complete cache model, only
bounds will be described. An upper bound on mean instruction execution time may be

computed by assuming states 4 and 8 to be GRM reference states: 1z = {3, 4, 6, 8}, see

figure 7.2. This provides an upper bound in that it assumes a scatter (line) write occurs
on write-through whereas in reality a single GRM may be singled out for the word
write-through. By assuming a scatter fetch instead, the model overestimates the amount
of GRM reference activity so queueing effects will be overestimated. Hence the mean

state 1 cycle time will be overestimated.

Lower bounds on the mean instruction execution time may be determined in two
cases: when a write-through operation delays processor activity (no concurrency within
instruction execution); and when write-through takes place concurrently with processor
operation. In the sequential write-through case, assume states 4 and 8 to be computa-
tion states with sojourn times given by their connection times. This provides a lower
bound on the mean instruction time in that in reality more queueing will be evident

than the assumptions describe and queueing time will be present in states 4 and 6

138

sojourn times: Qp = {3, 8}.

In the concurrent write-through case assume states 4 and 6 to be computation
states with no sojourn time (they are essentially removed). This provides an approxi-

mate lower bound on the mean instruction execution time.

Bounds may be derived from qualitative concepts, the SMP model's {ramework
allows the system evaluator to reason at the SMP level. It would be difficult to do the
same straightforward, qualitative reasoning when using an ARP based model [Hoo77,

MuM82a].

139

Case 2 - Scatter fetching with copy-back replacement.

P, =
0 A -k)r/, (1-7;)(I—IDC) (1-r,)rDC hy (-1 X1-hp)rDc i 0 {1k)(l—r‘,) (-1, X1-4,)rDC (l—r/)
1 0 0 0 0 0 9 0 0
1 0 0 0 0 bl 0 0 0
0 0 0 0 0 0 i 0 0
0 0 Q 0 0 0 1 0 0
o0 0 0 0 0 1 0 0
0 R (A (1A Klery) 0) 0 0 0
1 0 0 0 0 Q b} 0 o]
0 0 0 0 0 0 1 0 0

As in case 1, upper and lower bounds on mean instruction execution times may be
determined as follows: an upper bound on the mean instruction execution time is deter-

mined when state 4 is taken to be a reference state: 0z = {3, 4,6,8,9}. A lower bound

on the mean instruction execution time is determined when state 4 is taken to be a com-

putation state with sojourn time given by its connection time: Qp = {3, 6, 8, 9}.

In both cases, states 3 and 6 represent line replacement states where a cache line is
written from cache into global memory and its successor is read from global memory into
cache. Hence these states’ connection times are determined by the time required to write
a cache line and then read a cache line (recall that it takes a single word transfer time
for either operation because this is the scatter fetch case, a line is transferred in parallel
to/from global memory) hence a two word transfer time would be appropriate. States 8
and 9 are entered when no replacement needs to be done, only a new line needs to be

read so the connection time for these two states is given by a single line read time.

140
Case 3 - Line fetching with write-through replacement.

This has the same transition matrix as case 1.

Each PE request’s destination is uniformly distributed over all GRM’s under the
reasonable assumption of interleaved address mapping into GRM numbers. Furthermore
connection times for GRM references are given by the time required to read or write a
line of L words from/to the chosen GRM in a circuit switched connection. The connec-
tion time for states 4 and 8 is given by the time required to move a single word between

the PE and the required GRM: Qa, = {3, 4,6, 8}.

Again, by taking the write-through states (4 and 8) to be computation states of
negligible sojourn time an approximate lower bound on the mean instruction execution

time may be obtained.

141
Case 4 - Line fetching with copy-back replacement.

This case is similar to case 2 but states 3 and 6 must be separated to represent the

two possibilities for request emissions: if, on a line replacement, both the line to be writ-

11 1

ten and the line to be read fall into the same GRM (with probability MO E),

then a single connection transfers 2L words; alternatively, if the two lines to be moved

fall into different GRM's (with probability 1 - —‘:11—2-), two references are made. If the

two references are made sequentially (due to lookahead unit complexity limitations), an

appropriate state diagram is given in figure 7.3.

The transition matrix is similar to case 2 so will not be displayed, modifications in
transitions relevant to entries to states 3 and 10, and 8 and 12 are required. Notice that
the state 12, 13 sequence describes the emission of two requests for line transfers and as
such must in actuality reference two distinct GRM’'s. This could be represented by
separating these two states into M similar parallel copies as shown in figure 7.4 -- one
for each GRM referenced on the {irst request emission. The same applies to the state 10,
11 sequence. To reduce complexity the parallel states in figure 7.4 might be lumped
(with some error ensuing) as in figure 7.3 with 7,12, = 1/M, 7,13» = 1/M. Recognize
that this is an approximation. The model is powerful enough to be used more accurately
by using the M parallel cases substituted for the approximate states 12 and 13 (the
computed results may though be the same for the explicit and lumped configurations
because of the fractional argument). Again concurrent processor operations may be

examined to obtain bounds on the mean instruction execution time.

If cache write and reads occur concurrently when distinct GRM's are referenced, a
PE may emit two requests simultaneously. This violates the single request per PE
assumption so the SMP model as described so far may be difficult to apply. The next
chapter discusses SMP model extensions that may be used to model multiple request

emissions, the problem has not generally been solved sufficiently.

142

Figure 7.3 Case 4 instruction execution timing.

143

Reference Refearence
GRt 1 G n
Reference Reference
o GRY
J el j 'y]

Figure 7.4 M parallel reference states to replace states 12, 13 and 10, 11.

7.4. Conclusions

This chapter demonstrated an application for the SMP model in a design com-
parison study. The example shows the natural descriptions that may be used to
represent PE behavior at a low level of PE operation. Had the ARP based models of
processor behavior been employed, little could have been said about instruction execu-
tion times. For example, using ARP based models requires either: inter-reference and
connection times be determined experimentally (on a uniprocessor for example), instruc-
tion execution times are still undeterminable from the ARP level of description; or an
SMP to ARP reduction could be done (to coerce the cache state diagrams into an ARP
model description), then waiting times could be found from the chosen ARP model, and

finally an SMP description could be used to derive instruction execution times from

144

waiting times. In short, if timing measures are desired then some form of SMP analysis

will be required. The SMP model supplies directly these aspects of timing analysis.

Clearly, the instruction model described here is a simplification of processor timing
evident in real systems. The description may be extended to include more realistic tim-
ing descriptions. Figure 7.5 shows a more sophisticated instruction execution diagram
where various types of instructions have been separated into different branches off of an

instruction fetch state.

Figure 7.5 Simple extension of the instruction execution model.

CHAPTER 8

MODEL EXTENSIONS AND MODIFICATIONS

Model extensions are described in this chapter. Statements or calculations are
made when appropriate. The emphasis is on describing problems that have been
encountered but not yet solved sufficiently. Hence further work might address the

model modifications described.

8.1. State Occupation Overlapping

Since processor hardware often overlaps operations (e.g., lookahead, etc.) modeling
such behavior is desirable. Figure 8.1 shows an example where a PE performs two
operations concurrently in a fork/join operation. To model this behavior, concurrently
occupied states may be lumped together into a single composite state. The sojourn
time for the composite state is required by the SMP model. Clearly, the sojourn time for

composite states is given by:

S,c = max{S, }
s¢ C
Where C is the "composite” state composed of a set of states s ¢ C C A;. Further exact
calculations for moments of composite state sojourn times require the CDF’s S,,(t). The

CDF's are required because

Se = [(1=S,c (0)as

Syc(t) = Pr(g',c < t)= Pr(g',, <t foralls € C)
If all states # ¢ C have independent sojourn times this becomes

SpC(t) = Hsps (t)

s¢C
Bounds may be placed on §pC without S, (¢) though:

145

148
Soc(t) < Sy (t) foralls € C, and ¢ € [0,00)
because the above product is less than any term in the product. Hence,
1-5,c(t) 2 1-5,,(t) forall s € C, and t ¢ [0,00)
S,c -.-=f (1-Syc(that > ["- Sy (1))t = 5, foralls e C

So,

3 -

SpC = ?{%{Sys}

Taking this bound to be an equality would give a lower bound on cycle times (state
transition times) - assuming that W,, are known — in that composite states may be
occupied for more time than ascertained by the bound. Computationally, taking the

above bound to be an equality is unpredictable. Consider assuming the bound to be an

concurrently

Operation 1 Operation 2

Figure 8.1 Overlapped state occupation.

147

equality, and consider the solution process on the £ iteration of the fixed point solution
procedure. Due to equation (3.24), assuming the lower bound makes computed rates on
the k™ iteration higher than actual rates. These rates then raise waiting times com-
puted on the k+1% iteration, which in turn increases the assumed lower bound for refer-
ence state sojourn times and decreases rates computed on the k+1% iteration. This then
reduces the waiting times computed on the k+2"* iteration. Hence as iterations proceed,
S,c may not be necessarily be computed as max{$5,, }, the computed value oscillates ini-
tially but will (probably) converge to a particular value of unknown quality. Although
approximate results may be obtained using this technique, their quality has not been
verified. Perhaps further work is warranted on this aspect. If composite states are
defined, it will be necessary to modify previous notation for request probabilities, etc.

These aspects have not been pursued or formalized.

To model concurrent PE activity during GRM references (such as when processors
overlap computations with resource use) other techniques may be developed. For exam-
ple, when overlapped references and computations are to be modeled the desired model
property is to have GRM reference times (for overlapped states) not affect SMP transi-
tion time characteristics; that is, the sojourn time for overlapped reference states should
be zero, they should not delay PE state machine sequencing. The technique will be to
coerce the overlapped states into the context of the present SMP model. This may be
done as follows: associate with appropriate reference states (whose sojourn times are to

be neglected) "anti-reference’ states.

Consider a reference state and its anti-reference state: the anti-reference state is
occupied just prior to the overlapped reference state so that the two (reference and anti-
reference states) are always paired together. (When the anti-reference state is exited, its
associated pormal reference state is entered with probability one.) Furthermore, the
anti-reference states’ sojourn time is given by the negative of the its associated normal
reference state. No requests are emitted upon entries to anti-reference states, a request
is emitted at the entry to the normal reference state (the converse choice is also valid).
Since the two states are occupied sequentially, the net delay encountered (in the model,
as viewed from the PE/GRM interface) during the resource use is zero, but a request s
emitted. (State occupation ordering could be reversed, the sequence is irrelevant.) Hence

(iRM queueing times will be affected as they should be. Consider a stochastic path,

148

~

Z,(t): a transition is made through the overlapped reference state instantly and PE state

machine sequencing proceeds.

For example, consider a simple PE description where a computation state (of
sojourn time 2 say) leads to a reference state (with connection time 1 say) which is occu-
pied "concurrently” with the computation state so that the time between request emis-
sions is 2 units (the computation state cycle time). The situation may be depicted as in
figure 8.2 with the appropriate anti-reference state. There are still unsoclved problems
with this technique. If PE’s emit requests faster than the global resource system may
service them (the effect might be ignored if it occurs with small probability) a resource
system "overflow” condition will occur. This would be the case il a system has P >> Af

so that W > 1.

Care must be used in applying the previous notation to anti-states it is not
appropriate to ask about the fraction of time that a PE spends in anti-reference states,
for this would be negative. It seems that statements may only be made about anti-
reference states paired with their corresponding normal states. If the sum is used for
finding the fraction of time that a PE spends in a reference/anti-reference state pair and
(3.12) is used for each state (reference and anti-reference), then the result is zero as it

should be - the PE spends no measurable time in overlapped reference states.

In summary, the SMP model may be enhanced with this state type. The utility of
anti-reference states suggests that there may be a use for anti-computation states. Their

existence and use have not been examined.

8.2. Muiltiple Requests

Consider extending the SMP model framework to allow PE's to emit multiple
requests. For example, lookahead units may emit multiple requests before connections
are required. There are, though, problems involved with multiple request emissions aside

from the obvious data dependency requirements.

Consider an example where two requests are emitted simultaneously for different
GRM’s (i and j) when a reference state is entered by a given PE. The two requests are
placed in GRM queues i and ; until the connections may begin. If the connection to

GRM i becomes available first, PE interface hardware starts the circuit switched

149

Computation 2 time units

state
’ R
Anti-
reference
ctate <4———sojoumn time: - (1 + W)

__ Reference

state ¢—sojoumn time: 1 + W

Figure 8.2 Anti-reference state example.

connection between the PE and GRM i. If during the GRM i connection the GRM ;

connection becomes available, GRM j must wait until the PE may use it. This in effect

places a return queue for connections at each PE. Notice that GRM j, while waiting for

the required PE, may either: continue waiting, in which case effective connection times

have been increased at the expenmse of waiting times; or it may temporarily activate

another PE’s connection if there is one in queue. The second choice seems to introduce

much more complexity into the design of GRM’s, so much so that it is doubtful that

preemptive connections would be used at the PE/GRM level of implementation, except

with very slow devices such as disks. The first choice is most appropriate but again will
effectively increase waiting times. In any event, it may be necessary to ensure temporal

integrity in returning connections due to possible data dependencies.

150

It is believed that the first case might be modeled by enhancing the SMP model
roughly as follows: new notation for request emission probabilities (1,,») must be dev-

ised. For example, rather than
Npsm = Pr{PE p emits a GRM request when it enters state s and it is for GRM m)
we might define
€psm = Pr(PE p emits a request for GRM m when it enters state 3).

Then ¢,y =1, ¢, = 1, etc. may be allowed. The mean number of requests emitted in

state s would be ¥ ¢, .
mn

For reference states, multiple simultaneous emissions may be modeled as con-
currently occupied states, see figure 8.3. Due to analysis complexity, it is believed that
several moments of waiting and connection times (including the effects due to return
queueing also) will be required. Formulations including CDF’s are possible, they have

not been pursued.

An aspect related to concurrent and overlapped timing is the concept of optimal
lookahead (prefetch) operation. Lookahead request emission may be used to overcome
degradation attributable to waiting times. Consider a simple single request per PE case
and an ARP description of PE behavior as in figure 8.4. Here PE , emits a request

W, = Y W,n n,m units of time before the connection is required. This allows the mean
m

rate of ARP cycling to achieve its potential (where queueing time is zero). Note that the
effects from lookahead timing themselves must be included in the analysis in that too long
a lookahead will yield idle GRM's because connections will be established too soon, PE's
will not be ready to use the GRM’s at the time the connections are ready. Alternatively,
if the lookahead unit underestimates queueing times, then a mean waiting time will still
be present. It does not suffice to compute W, independent of the lookahead unit and
then set the lookahead time to this value. In the ARP domain of PE description, a tech-
nique for finding this optimal lookahead time is to set the computation state sojourn
time with lookahead (5,) to §,; - W,. That is, in each iteration of equation solution
set S, =35, - W, and use 5; as the equivalent state 1 mean sojourn time. The

final solution that results for W, represents the lookahead time that is appropriate.

151

Figure 8.3 Multiple request timing example.

If W,, = EWM ry;,, is chosen as the lockahead for all GRM’s, it might not be

appropriate for a particular GRM, i.e. W, may not be W, except in symmetric situa-

tions.

It is possible that even in the symmetric situation W, > S, in which case no
optimal (in the sense of processors seeing no queueing time) solution exists for the looka-

head time.

Since the SMP to ARP reduction is involved in determining lookahead times and it
ignores the dependence of waiting times on emission states, error ensues in that the ARP
description does not guarantee instantaneous temporal equivalence. That is, if two
GRM references occur sequentially and rapidly, the lookahead unit -- it uses W, as its

lookahead time -- may not compensate for each reference queueing time. The deception

152

arises from the use of the ARP in describing processes which are not actually renewal
processes -- time varying behavior has been approximated with steady-state statistics,

and average values are used as the lookahead times.

Refsrence
state

Computation state

/ R

Processor enters Enits request Connection is
computation stats resdy

tine >

Figure 8.4 Lookahead timing.

153

8.3. Operating System Effects

The basic SMP model has assumed that a single process executes on each PE.
Meaningful results are believed to be obtainable in multiprogrammed situations if job
mixes are known for each PE and detailed information on operating system behavior is

available.

Again, the key to finding an individual program's mean execution time (CPU time,
not elapsed user time, this is dependent on scheduling algorithms, etc.) is the prediction
of mean queueing times. Mean queueing times may be estimated by using an average
mix of ”jobs” that execute on PE’s. Effects due to PE i on PE j would be weighted by
the fraction of CPU time received by various tasks/programs executing on PE i, includ-

ing the operating system running on PE i.

Although the approach may seem complex, it is simply an approach whereby PE
behavior is modeled as the average behavior of those tasks that execute on the PE.
Lumping programs together that exhibit much different resource use in various phases of
execution may cause an accuracy problem to arise. Consider an example, suppose we are
interested in computing waiting times for PE 2's program in a dual processor. During
program 2's execution however, PE 1 switches context from one program to another.
After the PE 1 context switch, PE 2 waiting times may change drastically, depending on
the characteristics of the two PE 1 programs. The effects may not be predicted properly

with simple fractional mixes.

8.4. Phases of Computations

When programs execute in phases, or PE's switch context, the problem of system
behavior with these phase changes must be addressed. The complexity of phased
analysis is large if done rigorously and it seems that simplifying approximation must be
employed. An example of a possible modeling technique is the construction of a system
wide SMP whose states represent the set of programs executing on each PE at the given
time. Transitions among these global SMP states correspond to context changes in PE’s,

see [MaM82]. This approach appears to be intractably complex.

Programs which execute in phases might be modeled by abstracting the SMP model

equations to a higher level where states in the new high level SMP model are in

1654

themselves SMP’s of the basic variety described thus far. The abstraction provides a
straightforward technique for accommodating phased computations. This seems to be a

reasonable, tractable approach to phase analysis.

8.5. Process Communleation

Consider modeling various forms of process/program communication where pro-
grams executing on different PE's communicate with each other. Two forms of process
communication will be discussed: direct process communications where PE's (their state
diagrams) exhibit direct state occupation coupling; and indirect process communication

through message queues contained in global memory.

8.5.1. Direct Process Communication

The simplest example of two processes communicating directly where a sender pro-
cess Writes a message into, for example, a mailbox location. A receiver process checks its
mailbox to see when the message arrives. In the case where the sender waits for the
receiver to "catch up,” a process join has been created (the receiver waits for a message
if it checks the mailbox first), see figure 8.4 — this is the case considered in this subsec-
tion. (The other situation, where a message queue may form, is considered next.) Define
the communication states for processes i and j to be 5, and s, respectively. Then from
the connectedness of process behavior:

~

C:s‘ 3, (Cd) = C}sj) (U) (81)
where w represents the particular process cycle (from s, to s,) in question. This reflects
the fact that neither process may get ahead of the other in terms of cycle times with

respect to their communication states.

Consider the sojourn time for each communication state s, and 9, . If these may be
established, then as before, each SMP will have been sufficiently characterized. Keep in
mind that the concepts certainly need to be extended to the case where are multiple

communication states in many SMP's.

From the characterization of the join above, note that one and only one of the two

processes will wait in its communication state for a nonzero time, hence:

155

Figure 8.5 Direct communication process linking.

or,

~

S (W)X §,,’ (wy=10 (8.2)
The problem is that neither (8.1) or (8.2) uniquely identifies mean cycle times or sojourn

times from the solution point of view. (8.1) establishes the equality, but does not

158

describe how a solution may be obtained. (8.2) is informative, but is of little use in
establishing either mean value (the two random variable Sy, (w) and 5/.,}(«;) are not

independent). It appears that the only approach to finding “9—”; or S‘:,,} and consequently

C,, = 5],) ; is the computation of approximate CDF’s for message waiting times. For

+

example, the mean sojourn times may be characterized as follows
§". (w) = E| message waiting time | process i must wait |Pr{process i must wait)

Pr{process i must wait) = Pr(T, (3 ,{s,}) < T (8 .{s })
=1 ~Pr(T (2,{8,}) > T (5.{2, }))
from the previous notation. The only way to compute this seems to be as follows
(assuming that both PE’s i and j leave their states s, and s, simultaneously):
Pr(process i must wait) = 1 -f T, (s, {2, },1)dT, (o, ,{3, },1)
Which requires the state transition time CDF's (or at least cycle time CDF’s). Represen-
tative functions might be assumed for T, (2,,{s, },t) and T, (s, ,{s, },t) from which moment
matching may be used to find various unknowns in the representative functions. The
form of these representative functions should be determined from real program commun-

ication data.

Due to (8.2):

Pr{process i must wait) = Pr(§, >0)= Pr(S),] = 0).
To compute the mean time that process i must spend waiting for process j, we
might consider:

process i message waiting time (w)

f,(a,,{e,})(w)-ﬁ(s,,{s.})(w) f (3 {2, Dw) > T (s, {5 })w
0 (5, {8 DW) € T (s, (0)

That is, we are finding the conditional expectation of the difference between entry times

to the communication state. The calculations appropriate are (abbreviate

~ o~

T, = T,(s5,{5 D), T. = T (s, {s,)

Pr{process i message waiting time < « | process i muat wait) =

157

4

h fl Sa)
=PAT, < T, <a+T)
= [PAB< T, < a+)T (3)

v
A
<
AN

= [T(PAT, S a+ 9)- PAT, <)T, (3)
= [T(T,(a+ 8- T,(9) + PAT, = 8)dT.(9)
=W, (a)

Then the conditional waiting time is given by:

Elprocess i message waiting time | process i must wail] = j;n(l - W, (t))dt
To perform these computations tractably, representative functions might be used.
Also note a very important characteristic which affects an accurate analysis: since
processes i and j exit their communication states simultaneously there is strong
correlation/dependence between states occupied in processes i and j. It may not be
appropriate to use general time quantities when computing effects on process i due to
process j at the level of detail required in this application. It seems, though, that to do

otherwise introduces time dependence into the physical queueing analysis.

The form of message waiting used in the implementation impacts GRM queueing
times. Consider a technique for message waiting where receiving PE's repeatedly check
their message queues (contained in GRM's) in a tight loop (referred to as a spin lock in
C.mmp terminology, [SiB82]). Here the message waiting process causes its own GRM
queueing times to increase because of the high rate of request arrival (from the spin lock)
at the GRM in question. Alternatively, if special "interrupt” hardware signals message
readiness, then there would be no increase in- GRM queueing times due to spin locks -
there would actually be a decrease because no GRM references would be made in mes-

sage walt states,

Notice that since the receiving process changes its characteristics when it is waiting
for messages, the problem of phase analysis is deeply embedded in the modeling of com-
municating PE’s. Transition probabilities will also be a function of sojourn times in that
the number of check loops executed by a receiving process in its wait state depends on
the mean message waiting time due to the sending process and the mean queue check

time (with GRM queueing times included in the spin lock case). See figure 8.6 for a

158

simple diagram. With this addition of sojourn and queueing time dependent transition
probabilities, the complexity of the solution process increases greatly. Each fixed point
iteration would, besides the previous calculations, require solving linear equations for the

embedded MC probabilities.

8.5.2. Indirect Process Communication

In this form of communication, processes communicate through message queues.
We will associate with receiving processes message queues (which would physically be
located in global memory) that senders deposit messages into. Aspects of importance in
this situation include the mean message queue lengths, message queueing time moments,
logical message queue server utilizations, etec. To obtain characteristics of message queue

behavior, message queue service and arrival processes must be characterized. To use, for

Pr(message is not ready) =
1 - Pr(message is ready)

Pr(message is ready)

Figure 8.8 Bernoulli message waiting.

159

example, a two moment based message queue model requires the first two moments of
message interarrival times and message queue service times. Both of these parameters
may be deduced (approximately) from considering the message source and service process
SMP transition times. That is, SMP timing characteristics directly affect the behavior

of these logical message queues.

For example, consider a message queue that a single process (SMP i) serves. Furth-
ermore, suppose that all other processes deposit messages into this message queue. The
physical implementation (such as its storage placement) of the message queue provide
details for the SMP model. Again, it is believed that the problem of phases is involved.
Note that this form of communication is not wholy distinct from the direct form, a

queue is simply allowed to form at the receiving process.

8.8. Conclusions

The discussion has been incomplete in many places in this chapter, it is intentional
as the concepts are only meant as guidelines for further study directions. The problem
of phase analysis seems to be related to many other model enhancements shown. State
occupation overlapping and multiple request emission modeling also seem to be impor-

tant enhancements.

CHAPTER 9

CONCLUSIONS AND SUMMARY

The model framework described is applicable to specific model development appli-
cations and provides general information about characteristics of system behavior. In its
present state, the SMP model of requestor/resource systems is more powerful than previ-
ous models specifically developed for modeling memory interference. The SMP model
supplies many of the necessary tools for constructing system models with the PE
description level chosen by the system evaluator. PE description levels may range from
the elementary alternating renewal process description considered in previous memory
interference models, through renewal based descriptions such as instruction execution

descriptions, up to complete program execution descriptions.

Attention to detail in the model development should help to ensure model applica-
bility in many situations. Apart from applications in system studies, the model analysis
results provide analytic insight into system behavior in a more detailed manner than
previously available. The generality in development allows the model to be applied in

non-computer applications including finite customer queueing network analysis.

In systems where requestors whose state transitions may be approximated by semi-
Markov processes and contend for system resource module service through a virtually
circuit switched crossbar, the SMP model as described may be applied. In situations
other than those described here, some equations may have to be re-written to reflect
specific system operation and new physical analysis may have to be done, but the entire
model framework need not be re-developed. This flexibility is achieved by using physical
analysis in characterizing resource system behavior. Physical analysis maintains reason-

ably low solution complexity even in reasonably general situations.

160

181

‘The SMP model of requestor activity allows requestor to be specified in a versatile,
natural way; the model calculations operate on requestor description parameters.
Parameters include: requestor state transition probability matrices; computation state
sojourn time moments; resource module service time moments; and resource module
reference probabilities, or reference patterns. The number of moments of time related
random variables required by the model is determined by the physical analysis. Using

first moments may allow bounds to be obtained.

With these parameters (one set applies to each requestor) the SMP model is capable
of predicting the following system performance measures: requestor state transition time
moments, and hence mean execution times and rates; system element utilizations and
data transfer rates; resource waiting time moments; and coefficients of variation for tim-
ing quantities. The meaning of the timing performance measures is determined by the
requestor activity representation chosen; that is, if processor activity representations
apply to program execution directly, then program execution times are predictable from
the model directly; alternatively, if processor activity representations apply to instruc-
tion execution timing, then instruction execution time moments may be predicted by the

model.

Along with the prediction capability is the general information obtainable from the
mathematical relationships. Summarizing some of the properties and results that have

been discussed here, but not necessarily in their order of importance:

higher moments of service and computation times may be important if requestor

synchronization is to be described

. resource queueing times are asymmetric in general, not all requestors "see” the

same resource system behavior

e in some system configurations (the system hardware description along with the
requestor state machines) resource queueing must exist, there may not be a perfect

synchronization scheme

e assuming resource queueing times to be requestor state invariant is approximately

equivalent to the reducibility of a requestor state machine (semi-Markov process) to

' . L

162

an alternating renewal process (of the sort considered in previous models) that is
useful for finding waiting times and other quantities not related to semi-Markov

process state transition times

* program execution times may be predicted reasonably accurately from model

parameters

o requestor activity may be modeled in a direct and natural way, state diagrams are

used to represent timing and resource reference characteristics of requestors

. the model framework is general enough that special case models may be devised for
specific purposes, for example, cache models may be devised in a straightforward

manner

e enhancements of the basic model allow process communication timing modeling to

be done

e experimental evidence seems to show that first moment matching suffices for
deducing program transition probabilities, loops may be represented probabilisti-

cally with reasonably accurate resuits for first moment timing predictions

o bounds on system performance measures may be derived from first moment quanti-

ties alone
o the model developed may be used for timing based comparison studies

o coefficients of variation may be computed, they provide information about system

behavior randomness
e resource utilizations are a robust quantity with respect to waiting time predictions

With the chapter 8 discussion on model extensions, it i3 believed that useful
enhancements may be made without major revisions in the ideas and relationships
described. Since the SMP model allows requestor descriptions to be formulated in a

natural way, it is doubtful that the model framework would need to be fully revised in

163

developing more modeling accuracy or capabilities. Enhancements and modifications

may be made as required in modeling new effects.

-
:
2

164

185

There seems to be an error in the calculations concerning the superposition of

two hypoexponential (coefficient of variation less than one) renewal processes as shown

in [Kue79]. The calculations described here are guided by [Kue79].

When superimposing two renewal processes (counting processes for example) the
resultant process is a renewal process only when the two original processes are. In gen-
eral, the result of a superposition is not a renewal process (only if both source processes
are Poisson is the result a renewal — and Poisson -- process). Treating the resultant pro-
cess as a renewal process leads to an approximate coefficient of variation. The approxi-
mation is most accurate when the renewal times for the superimposed processes have
densities on an interval. The approximation is least accurate when the two source pro-
cess renewal times are discrete in nature. [Kue79] proposed representative processes
which are based on the first two moments of the source processes (see figure A.l).
Renewal process theory will be used to compute a coefficient of variation for the result-
ing process. Notice that three cases ensue: both source processes have coefficient of vari-
ation less than 1; one source coefficient of variation is less than 1, the other is greater

than 1; and both source coefficients of variation are greater than 1. The first case will

be derived here, the second two are covered in [KueT9).

Call C the resulting coefficient of variation while ¢, and C, are the two source

coefficients of variation. Let Ty be the forward recurrence time (in the result process)
from an arbitrary examination time for the result process. Let t, = E[renewal time for
process 1], t, = E[renewal time for process 2|. Then:

bt =
tito

C2

=0
-

v =1
Since ¢, and ¢, are given, we need only calculate Ty .

Let F,(t) be the renewal time CDF for process 1 and F.{¢) be the renewal time CDF
for process 2. Then for the hypoexponential case these two CDF’s are:
0 0 S t S t]l
FJ (t) = {l—e-(ﬂ(b—t;l) ¢ 2 t;l
Where for j = 1, 2

ty =t (1~ C,) = deterministic time delay in figure A.1.a

€g = - rate of exponential delay in figure A.l.a

168

Figure A.1 Two moment representation function from [Kue79).

and if €, = 0 = ¢, = o or there is no exponential delay. Let te = 1/c,.

nmauT%uﬂwudanF(du)

from [Kue79]. Then T, = f (1- Ty (t))dt. Rearrange the two processes so that
{11 € ty. Then

T, af 1 Ty(t)d:+j 1 Ty (t))dt +Ln(1~TV(t))dt
Define

Ex"’f ITV())

Ex= f, 0Ty ()

€0
Ey= f,m(l“Tv(‘))d‘
Carry out the integrations as follows:

t<IiySin =

thSt<tg =

th<Lta st =

Lyt
Then
t < tl! s tﬂ =3
1
Ty(t)=1- ™ (¢, = t)(ta-t)
12
th<t<ty =
1 t-t
To(t) = 1- 7 (tize Ytz - 1)
b2
tpStast =
1 ¢, f -t e E~t
Ty(t)=1- i (£rpeH T D)t e =D

Ty (!) is continuous, Ty (0) = 0, Ty (o) = 1.

Ey = [, -1y ()
Loda |

tty ' 3

i

E;= j,ff‘(h Ty (1)t

tyyft
t]_?ée 11/12

byHe)E

Computing the three expectations E,,E, Ey:

b
«

3 + tytatyy)

~tft ~tyft
TR e [(‘21‘*’ tig=to)e BUE - (tyHtpty)e B 12]

tils

If t,2 =0, then assign E, = 0.

o

Ey= [(1-Ty(t))dt

21

tit e

Pt tiyie

trofom

fntm+ipin
tiatm

titotys + t)€

If gt == 0, assign E4 == 0. This completes

the approximate calculations for the result-

168

ing coefficient of variation when two hypoexponential processes are superimposed.

b
:
O
2
M

169

170

BIBLIOGRAPHY

[BaS78]
F. Baskett, and A. J. Smith, "Interference in Multiprocessor Computer Systems
with Interleaved Memory,” CACM, Vol. 19, No. 6, June 1978, pp. 327-334.

[Bha73]
D. P. Bhandarkar, " Analytic Models for Memory Interference in Multiprocessor
Computer Systems,” Ph.D. dissertation, Elec. Eng. Dept., Carnegie-Mellon Univ.,
Pittsburgh, PA, Rep. AD 773 843, Sept. 1973

[Bha73]
D. P. Bhandarkar, "Analysis of Memory Interference in Multiprocessors,” /EEE
TC, Vol. C-24, No. 9, Sept. 1975, pp. 897-908.

[Cin72]
E. Cinlar, "Superposition of Point Processes,” Stochastic Point Processes: Statisti-
cal Analysis, Theory, and Applications, Peter A'W. Lewis, Ed. John Wiley and
Sons, Inc. 1972, pp. 549-606.

[Cin75]
E. Cinlar, Introduction to Stochastic Processes, Prentice-Hall Inc., Englewood
Cliffs, N.J., 1975.

(Fre82]

jrre
A. A. Fredericks, "A Class of Approximations for the Waiting Time Distribution in
a GI/G/1 Queueing System,” Bell System Technical Journal, Vol. 81, No. 3, March
1982, pp- 295-325

[GrHT4]

L
D. Gross, and C. M. Harris, Fundamentals of Queueing Theory, John Wiley and
Sons Inc., New York, 1974.

[GoG83)
A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M.
Snir, "The NYU Ultracomputer—~Designing an MIMD Shared Memory Parallel
Computer,” [EEE TC, Vol. C-32, No. 2, Feb. 1983, pp. 175-189.

Hex82]
D. P. Heyman, and M. J. Sobel, Stochastic Models in Operations Research, Vol I:
Stochastic Processes and Operating Charactersstics, McGraw-Hill, Inc., New York,
1982.

‘HooT77]
C. H. Hoogendorn, "A General Model for Memory Interference in Multiprocessors,”
IFEE TC, Vol. C-26, No. 10, Oct. 1977, pp. 998-1005.

171

[Kle75)
L. Kleinrock, Queuesing Systems Volume I: Theory, John Wiley & Sons Inc., New

York, 1975.

[Knu73]
D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching,
Addison-Wesley Publishing Co., Inc., Reading, Mass., 1973.

[KrL78]
W. Kraemer, and M. Langenbach-Belz, " Approximate formulae for the delay in the
queueing system GI/G/1,” Congressbook, 8th Internat. Teletraffic Congress, Mel-
bourne, 1976.

[Kue79]
P. J. Kuehn, "Approximate Analysis of General Queueing Networks by Decom posi-
tion,” [EEE Transaction on Communications, Vol. COM-27, No. 1, Jan. 1979, pp.
113-126.

[MaG81]
M. A. Marsan, and M. Geria, Markov Models for Multiple Bus Multiprocessor Sys-
tems, Report No. CSD 810304, Computer Science Department, UCLA, Feb. 1981.

[MaM82] .
B. A. Makrucki, and T. N. Mudge, " A Stochastic Model of Parallel and Concurrent
Program Execution on Multiprocessors,” Computing Research Lab Report No.
CRL-TR-3-82, Dept. of Electrical and Computer Engineering, University of Michi-
gan, October 1982.

McC73]
J. W. McCredie, "Analytic Models as Aids in Multiprocessor Design,” Proc. 7th
Annual Princeton Conf. on Information and System Sciences, March 1973, pp. 186
191.

[MuM82a]
T. N. Mudge and B. A. Makrucki, "Probabilistic Analysis of a Crossbar Switch,”
Proc. 9th International Symposium on Computer Architecture, IEEE, April 1982,
pp. 311-320.

[MuM82b]
T. N. Mudge and B. A. Makrucki, "An Approximate Queueing Model For Packet
Switched Multistage Interconnection Networks,” Proc. of the 3-rd Int. Conference
on Distributed Computing Systems, October 1982, (to appear).

[MuM82c¢]
T. N. Mudge and B. A. Makrucki, "Analysis of Multistage Networks with Unique
Interconnection Paths,” Proceedings of the 1§-th Southeastern Symposium on Sys-
tem Theory, April 1982.

[Pat79]
J. H. Patel, "Processor-Memory Interconnections for Multiprocessors,” Proc. 6th

172

Annual Symp. on Computer Architecture, IEEE, April 1979, pp. 166-177.

[Ram85]
C. V. Ramamoorthy, "Discrete Markov Analysis of Computer Programs,

ACM 20th National Conference, pp. 386-392.

" Proc.

[Rau79) ’
B. R. Rau, "Interleaved Memory Bandwidth in a Model of a Multiprocessor Com-
puter System,” IEEE TC, Vol. C-28, No. 9, Sept. 1979, pp. 678-681.

[Ros70]
S. M. Ross, Applied Probability Models with Optimization Applications, Holden-Day,
Inc., San Francisco, 1970.

[SeD79|
A. S. Sethi, and N. Deo, "Interference in Multiprocessor Systems with Localized
Memory Access Probabilities,” I[EEE TC, Vol. C-28, No. 2, Feb. 1979, pp. 157-163.

[SeM81]
K. C. Sevecik and 1. Mitrani, "The Distribution of Queueing Network States at

Input and Output Instants,” JACM, Vol. 28, No. 2, April 1981, pp. 358-371.

[SiB82]
D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and
Ezamples, McGraw-Hill, Inc., New York, 1982.

[SkAB89]
C. E. Skinner, and J. R. Asher, "Effects of storage contention on system perfor-

mance,” /BM Systems Journal, No. 4, 1969, pp. 319-333.

[Smi74]
A. J. Smith, Performance Analysis of Computer System Components, Ph.D. Thesis,
STAN-CS-74-451, Computer Sci. Dept., Stanford Univ., August 1974.

[Smig2]
A. J. Smith, "Cache Memories,” ACM Computing Surveys, Vol. 14, No. 3, Sept.
1982, pp. 473-530.

[Str70]
W. D. Strecker, Analysis of the Instruction Ezecution Rate in Certasn Computer
Structures, Ph.D. dissertation, Carnegie-Mellon University, Pittsburgh, 1970.

[Whig3)

"Toward an Approximation Theory for Point Processes and Networks Queues,”
Newsletter of the ORSA|TIMS Applied Probabslity Group, Fall 1983, pp. 2-4.

8.6

Al

Bernoulli message wWaitingccccevvvvvnniniiienenniinnn

Two moment representative function from [Kue79|

.....................................

.....................................

LIST OF TABLES

List Merge Tablesoociiiiiiiiiie e e 107
Correlation Test Resultsoocoooiuiiiniiiiiiiceeeeeeeee e 114
Asymmetric Test Resultsccooooiniiiiiiiiiiiii e 118

Synchronous COMPAriSONooeiiieiiuieiiteieteceeeee e e e 127

X1

.

NOTATION

If B is a random variable, it will be written with a~ above it, such as B. B’'s cumu-

lative distribution function (CDF) will be written as E{{) = Pr(§ < t) while B's probabil-

ity density function (pdf) (assuming that it exists, otherwise use the Dirac deita func-

tion) will be written as) = f%-t-)- Moments will be written as

_ -~ <k
B = EB|, BT = E|B |. Important relationships (those critical to model solution) will
be marked with a . In diagrams or ﬁgures, dots (e) will be used to indicate global

resource module reference states.

SUMMARY OF VARIABLES AND TERMINOLOGY
TERMINOLOGY
PE - processing element, typically a processor/requestor and some local hardware
GRM - global resource module, i.e., a system resource
ICN - interconnection network

SMP - semi-Markov process

xil

ARP - alternating renewal process

VARIABLES

Variables post-fixed with a (p) indicate the quantity under consideration without

PE p’s contribution.
A, - state space for SMP p

A, - reduced state space for SMP

g(t) - bandwidth at time ¢

~

C,y - the state transition time for SMP p when moving from the entry into state i to

the entry into state s

E,m - the excess connection time for the connection in progress when processor p emits

a request for GRM m when it enters state s

E,m - the mean excess connection time for processor p requesting GRM m, independent

of the state of emission
fm - a multiplying factor involved in the computation of E,,
9,m - a multiplying factor involved in the finite customer G/G/1 approximations

h,m - a utilization factor used to approximate history effects

A}p (n) - the embedded Markov chain state after n transitions in SMP »
A~/m (t) - the GRM m queue length at time ¢

P, - the SMP p transition matrix

xiti

pys - the time limiting fraction of time that SMP p is in state ¢
Q, (i.j,t) - the semi-Markov kernel for SMP p

@, - the set of requestors to be counted as in the queueing system associated with

GRM m as seen by PE p

#,m - the set of all PE’s (not including p) that contribute work to GRM m

S, - the sojourn time random variable for SMP p in state s

T,(:iQ) - the state to set transition time for SMP p. The time is measured from the

exiting of state i to the entry to any state in set (.
u,m - a usage factor used in the computation of f,,

Vy, - the coefficient of variation for the interarrival time of requests at GRM m

Vp’ - the coefficient of variation for the interemission of requests from PE p

w W, - the waiting time seen by requests arriving at GRM m from p; W, indi-

psm »

cates the dependence on the state of emission while W, ignores it.

~

. X . - the connection time random variable for GRM m.

Y ,on - the connection time random variable for PE p using GRM m when it is in state s

Z;, (t) - the state of SMP p at time ¢

{Z,(8), t = 0} - the SMP describing PE p’s behavior

a,n - the probability that GRM m is is free at the PE p request arrival time

Xiv

~

A,n - the sequence of requests in the GRM m queue at the time of a request arrival from

PE p

N,m - the probability that PE p emits a request and it is for GRM m when it enters

state s

ﬂc’ - the set of states that are computation states for PE p, QC’ C A,
Qp, - the set of states that are GRM reference states for PE p, Qg C 4,

X,sm - the rate of request flow from PE p in state s to GRM m

\,m - the rate of request flow from PE p to GRM m

A - rate of request flow into GRM m

X\, - rate of request flow out of PE p

om - GRM m utilization

#, - PE p utilization

7, - the embedded Markov chain steady-state probabilities or fractions for SMP »

Equivalent Quantities

These quantities are associated with the ARP and are obtained in reducing PE

SMP’s to approximately equivalent ARP’s, they are denoted with a " .

’

C, - the equivalent ARP cycle time

7
~

S, - the equivalent ARP computation state sojourn time, or the "think time” associated

with ARP p

XV

[

~

Y ,m - the equivalent ARP p connection time for GRM m

Nom - the equivalent ARP probability that a request emitted by PE p is for GRM m

v -
g Ry v g

xvi

CHAPTER 1

INTRODUCTION

The decreasing cost of hardware has encouraged the introduction of multiprocessor
computer systems. If carefully designed, multiprocessors can offer many desirable
features, including high performance and fault-tolerance. However, there are many prob-
lems associated with multiprocessor design, operation, and programming. Design issues
inherent in the specification of multiprocessor systems include: the choice of the number
of processors in the system and their impact on performance; the configuration and
operation of the interconnection network between processors and its effect on perfor-
mance; and the structure of an operating system with primitives that control system

resources and manage user programs.

To obtain information concerning these and other more specific design problems,
system designers rely on a wide variety of techniques. Experience and intuition are often
used as initial guidelines for making design choices. Simulation studies may then be
used to verify or adjust design choices. However, simulation is often costly and rarely
provides insight into underlying mechanisms. An alternative to simulation studies is the
use of modeling as an evaluation tool. Model based evaluation of complex, real systems

has both advantages and disadvantages.

Primary advantages of modeling compared to simulation include: the general under-
standing obtained from the model and its development; and the usually low cost
incurred in solving model equations. The reward of general understanding should not be
underestimated: a reasonably accurate model provides not only quantitative information
but also a qualitative understanding of the system that is usually unobtainable from

simulations. Simulation provides good estimates of system operating points if appropri-

ate details are included but it does not describe the relationship between system parame-
ters and performance measures unless an empirical model can be induced. This is practi-

cally impossible in most cases.

The main drawback of model based system evaluation is that of accuracy. Models
are often predicated on assumptions that simplify mathematical analysis. Unfortunately,
these assumptions often oversimplify and lead to inaccurate results. Without prior
knowledge about the relative importance of various system parameters, it is imperative
that accurate assumptions be used; as many real effects should be included in the model
as are economically feasible. On the other hand, if a model is too detailed its solution
cost may exceed the cost of simulation or direct system measurements. In addition, very
detailed models may provide accurate solutions but often mask any qualitative under-

standing with their complexity.

Mean value models are quite convenient for obtaining rough estimates statements
regarding qualitative aspects of system behavior. This knowledge suffices in many situa-
tions. It is our contention, though, that the most informative approach to modeling
complex, real systems is to obtain results in the form of equations which are based on as
few approximations as is Vpractical. Then ssmple, special case solutions may be pursued
as desired by prospective model users. It is our further contention that special case
results are more useful when they have been derived from a more general model,
because the effect of approximations can be estimated. Whitt describes a philosophy of
advancing model development where heuristic approximations are used to encompass
effects due to, for example, higher moménts of random variables [Whi83|. That is, more
sophisticated modeling is advocated beyond that often done presently. Although the con-
text in' [Whi83] is queueing network modeling, the same belief is shared here — to

describe system behavior more realistically than past models have done.

The framework and development of model relationships are emphasized here. The
objective is to formulate a general model whose parameter structure forms a framework
for future special case models to be developed. The model framework also allows exten-

sions of the basic model to be developed in a straightforward manner.

To obtain general results which are not predicated on gross simplifying assumptions

a notation must be developed to reflect the generalities. Occasionally, the notation may

be cumbersome by comparison with models of a more simplistic nature — this is due in
part to the additional quantities that are not included in previous models. Merits of the

increased completeness include:

(1) the ability to encompass more performance measures within the model description
of the system, including estimates of program execution time

(2) the ability to develop more general relationships since the model assumptions are
more realistic

1.1. Overview and Thesis

Figure 1.1 illustrates the logical system to which the model may be applied. Mul-
tiprocessor systems are typically composed of a set of processors which are connected
together in the sense that they may communicate through some form of interconnection
network. Of primary interest here are systems where processors are tightly coupled to
form a local system, i.e., we are not explicitly considering computer networks. Rather,
local multiprocessor systems are the direct application. Systems such as the Intel 432,

the DEC System-10, C.mmp, and the IBM 360/158 fall roughly into this category.

Processors in the system are considered to be active devices that may originate sys-
tem actions, e.g., event occurrences such as finishing jobs, executing instructions, etc.
Processors may be grouped with local memory used for local data and instruction
storage. Local cache memory may also be present in a processor group. This group of a
processor with its local and cache memory along with any supplementary hardware will
be termed a processing element (PE). PE's may behave autonomously in that they may
execute programs stored in their local memory, alteratively they may have limited local

computation capabilities such as I/O channels or special purpose processors.

Resources in the system are devices which respond to requests for service generat;ed
by PE's. Examples include: main memory modules; disk units; and some forms of spe-
cial purpose processors that, for example, receive requests for service and respond with
an acknowledge when done. Resources in the system will be termed global resource
modules (GRM’s). There may be several types of resources of the same or different sorts
organized as modules which behave predominantly independently and may be accessed

as global devices.

To complete the system an interconnection network through which service requests
flow is required. Many possibilities exist in specifying the communication medium, they
range from a set of buses which connect PE's and GRM's, to a full crossbar that allows

all PE-GRM connection possibilities.

The interconnection network (ICN) considered by the model is shown in figure 1.1a.
PE’s are connected to one side of an ICN while resources are GRM's connected to the
other side. This configuration might also appear as in figure 1.1b. The two configura-
tions are not materially different, except that the model equations are presently written
for the system organization shown in figure 1.1a. It is important to note that the model
may be modified in appropriate places to allow modeling different configurations. For
example, if the system is organized as in figure 1.1b, where clusters are is designed so
that the GRM in each cluster gives preferential treatment to its local PE, model parame-
ters may be specified, and equations may be re-written, to reflect the physical system
\speciﬁcations. Hence although the model applies to many systems, it is described in a

specific context here.

In figure 1.1a there are no direct communication links between PE's. The model! is
primarily intended for MIMD (multiple instruction stream, multiple data stream) appli-
cations where dynamic (i.e., during system qperation) coupling between PE's is small; for
example, where PE's communicate through GRM's (not via low level synchronous ‘com-
munications). The basic model does not have the capability to accurately model syn-
chronized PE communications or highly coupled PE behavior. There are approximate
techniques discussed in chapter 8 that may be used to handle such cases but they have

not been tested.

The model assumes that the ICN is virtually circuit switched. That is, each PE
communicates with GRM's in a manner which scems to PE’s to be circuit switched.
The physical implementation is not considered explicitly although it may influence model
parameters or require equation modifications. The virtual crossbar displays one level of
connection delay and the total connection property (any PE-GRM connections not
involving destination conflicts or broadcasting may exist simultaneously) with no inter-
nal queueing delay. This effect may be achieved with a very high speed bus or buses, or

a crossbar -- which is becoming feasible with VLSI technology. Equations may be modi-

e — = s
R
|- | s
|

ree -

Figure 1.1 System configuration representation.

fied to include propagation delays.

Each PE executes a program which governs its activity. The term " program” will
be used to describe the controlling aspect of a PE’s behavior, whether the PE contains
an instruction executing processor or not. In the case where PE’s are, for example, [/O
channels, the term ”program” refers to the finite state machine that governs the
channel's operational behavior. Programs executing on PE's may contend for service

from the GRM's.

The model describes system behavior in terms of performance measures of the sys-
tem. Hardware characteristics such as speed, and program characteristics such as

branching fractions and timing specifications are parameters of the model.

Many relevant questions may be asked regarding system behavior at the level of

description chosen. This dissertation attempts to quantify answers to questions such as:

1) At what rate is the system doing useful work, i.e. at what rate is it executing PE
programs?

2) Is the system achieving its potential speed or is some speed (processing power) lost
due to resource contention! How much is lost?

3) Is a particular piece of hardware being utilized efficiently or is it a bottleneck? If
so, what is the bottleneck!?

The model may be used as a comparison device for evaluating alternative system
configurations, including programming. It does not explicitly guide the user to a better

operating point.

More specifically, the model provides information on the following aspects of system
operation: program state transition times or components thereof; PE utilizations and
supplementary quantities that concern PE behavior; and GRM utilization and supple-

mentary quantities.

State transition times are the times, or components of the times, required for a pro-
gram to move from an initial state to a final state. This set of performance characteris-
tics is important in determining the rate of program execution on a given PE and com-
ponents of a program’s execution time. An important aspect of the model development
is the inclusion of enough generality that performance measures of sufficient utility may

be predicted.

Consider timing aspects of program execution: programs execute up to a point
where they need service from GRM's. At this point in PE program execution (all PE's
are executing their own programs) the PE emits a request for service from an appropri-

ate GRM. These requests are routed through the ICN to the requested GRM.

After requests reach their destination GRM's they enter GRM request queues where
they are held until any service in progress has been completed (all GRM’s operate " asyn-
chronously”); consider a single GRM: at the completion of a service interval, the GRM
controller examines the request queue for the next request for service. The queueing dis-
cipline is determined by GRM logic. Once a request from a PE reaches the GRM server
(it may have been in the queue), the GRM controller transmits an acknowledge back to

the originating PE informing the PE that it may begin use of the GRM.

Any modifications to the circuit switched property will require that equations
describing the new situation be derived. Modifications in the network structure and

behavior from above will impact the physical analysis of the resource subsystems, not

the theory of the model.

The assumption of a virtual crossbar ICN is used because this work is primarily
directed toward the modeling technique rather than the physical analysis of intercon-

nection systems. The impact of this assumption will be noted where appropriate.

Notice that the circuit switched connection property is suitable for implementing
data structure locks and semaphores in a very simple manner. For example, if a pro-
gram needs to do a real/modify/write operation on the contents of a global memory
location it would first obtain a connection to the appropriate GRM. Once this connec-
tion has been obtained, the PE is free to manipulate any contents of the GRM in an
uninterruptible manner. This advantage should not be underestimated, it provides a
very simple, clean implementation of what might otherwise be a special case architec-

tural concern [GoG83|.

After considering the behavior of PE’s, GRM’s and the ICN it becomes clear that
programs that describe PE behavior may do so at many levels. The highest level of PE
behavior description is that of an actual program flowchart. A PE description might
alternatively be a low level PE description such as those that have been considered pre-
viously [BaS78, Bha75, Hoo77, MaG81, MuM82a, Pat79, Rau79, SeD79, SkA69, Smi74,
Str70]. Early models have used statistics from program execution traces (such as GRM’s
referenced, inter-reference times, etc.) to provide parameter values for their equations.
The model developed here uses program specifications as its set of parameters. The pro-
gram need not necessarily have been compiled and executed for the model parameters to
be deduced. The difference between the two description techniques is implied by the
level of system description. In the early models, system activity was described at a level
of processor timing without knowledge of high level processor activity such as the pro-

gram it executes.

The level of PE description chosen during modeling depends on many factors such
as the level and detail of the analysis results desired by the model user, and the amount

of information available for the model being constructed.

With the generality offered by the SMP model (the model is based on using semi-
Markov processes to describe PE activity) there may not be a unique choice for the PE

activity description. For example, consider a simple example of an SMP model

8

description of a system configuration (system and programs) under two conditions:
where all program code and local variables are contained in local memory so that PE's
emit requests only pertaining to global data references; and a system where all instruc-

tions and data are stored in global memory modules.

In the first case the SMP model may be applied "directly”, i.e., the program
"flowchart” may be used as the program which describes PE activity. Various SMP
model parameters may be deduced by an "SMP model compiler” or by the SMP model
user. SMP model statistical parameters may consist of procedure execution times if they
do not entail references to data contained in global memory. In this case the complexity
of the SMP model solution is dependent mainly on the number of states in the PE
description diagram (i.e., the flowchart) and the number of PE's and GRM’s, there is
nearly a one-to-one mapping from program states in the high level flowchart to SMP
model states. In this case ezplicst program execution time components may be com-

puted.

In the second case where GRM references are very frequent, an instruction execu-
tion level of description may be used as the program flowchart, but its analysis may be
practically intractable. (The SMP model’s cost of solution becomes a problem when
there are a significant number of states in the SMP state diagram -- systems of linear

equations must be solved, their size is given by the number of states in PE programs.)

To alleviate such tractability problems, the modeler may consider state space
reduction techniques or approximations. For example, source program procedures might
be approximated by instruction models which are executed repeatedly. The number of
instructions executed in a procedure must still be determined in some manner — whether
it be in the model or experimental domain is not important. Procedure models may then

be connected together as the program control structure indicates.

The SMP model user is free to do appropriate model construction that may entail
state lumping, etc. Our emphasis has not been to study such lumping procedures and
state space reduction techniques. SMP model users are assumed to have done the neces-
sary transformations to arrive at an SMP whose characteristics reflect the desired model-
ing results and is tractable. Including the program description of PE activity and GRM

queues leads to the system depicted in figure 1.2. In the system, SMP's which describe

- |

PE activity "drive” the resource system through their emissions of requests for service.
Two types of states are shown: computation states and reference states (the latter are
distinguished by a small dot). The dashed lines indicate the request emissions from
reference states, they are dynamic links that exist for as long as connections are held.
The sojourn time in reference states is a function of this connection time, which in turn
is dependent on the queue activity at the GRM that receives the reference. By solving
for the sojourn times of the SMP model, quantitative answers can be given to questions
such as: how long it takes, on the average, to move from one SMP state to another;
what fraction of time GRM’s are busy; what fraction of time processors spend comput-
ing; how long GRM request queues are; and how long processors have to wait for their

GRM connections.

1.2. Previous Models

Models of the system described have been developed in a simplified form. Mul-
tiprocessor models (which are based on a crossbar of negligible delay) have been
developed in a simpler manner [BaS78, Bha73, Hoo77, MuM82a, Rau79, SeD79, SkAB9,
Smi74, Str70] where a simple GRM interface description of PE behavior has been
assumed. PE’s have been assumed to be in one of two states at any point in time: a
computation state; and a GRM reference state. A procedure has been developed here for
use in the SMP model solution that maps a given program to an equivalent two state
process which exhibits similar low level behavior. This reduction technique is an approx-
imation that provides an analytic approach to obtaining previous model parameters from

the "source” programs.

These previous models have assumed that low level PE behavior statistics are avail-
able. Since, though, this data depends on the program under examination, their
approach is a "post-programming” technique. That is, they depend on the availability
of program object code statistics. If a model is to be used as a prediction mechanism,
then such an approach is tedious at best. Since the SMP model is more closely associ-
ated with source program statistics, the approach developed here might be termed a

" pre-programming” technique.

10

s

Figure 1.2 The system with SMP’s and GRM queues.

Previous models’ restriction to describing low level machine statistics such as GRM
utilizations, queue lengths, and request queueing times limits their scope and utility.
From such low level data little may be deduced regarding program execution times
without extensive analysis after solving model equations. For example, loop and

instruction execution times may not be predicted directly from the model solution.

11

Using a restricted set of performance measures may lead to inaccurate conclusions
regarding programming choices. In fact, if resource utilizations are used as the only per-
formance measure guide, incorrect choices regarding program execution times may be
made altogether. The level and sophistication of performance measures is highly critical

if 2 model is to be used as a an accurate evaluation tool.

Some effort has been made in analyzing multistage ICN's [MaG81, MuM82b,
MuM82c, Pat79] but the results have not been derived in a form that is readily useful in
the SMP model. They have typically assumed that PE’s emit requests with a given
mean rate. The CDF (cumulative distribution function) of the interemission time varies
from one model to another. In these systems, a PE emits a request for service as above,

requests may then be "shifted” through the ICN to their destination.

[Ram65] described the modeling of program execution on a uniprocessor as a Mar-

kov chain. This is a special case of the SMP model.

All the previous models of the system behavior referenced earlier are special cases of
the SMP model although there are differences in the particular calculations used in, for
example, computing request queueing times.

The SMP model may also be applied to non-computer applications where PE’s are
replaced by general logical requestors. Requestors need not be physical devices. For
example requestors may correspond to customers which flow through a network of
queues (resources). Hence the SMP model may also be applied to finite queueing net-
work analysis where each network customer would correspond to a requestor whose
behavior is equivalent to the customer’s flow through the network (customers become

requestors).

1.3. Organization
This thesis is organized as follows:

e Chapter 2 defines performance measures for the system described along with a dis-

cussion of classes of performance measures and performance measure importance.

e Chapter 3 describes the system model and its assumptions. Model parameters and
system quantities are defined. Performance measure expressions are derived in

terms of the model parameters and supplementary system quantities for most of

12

the performance measures defined in chapter 2.

- Chapter 4 completes the model calculations with the derivation of expressions for
queueing times. The results of these calculations may be generally useful in small,
finite customer queueing networks.

Chapter 5 contains general system relationships that have been derived and
discusses additional information and bounds on system behavior. Supplementary

material concerning system relationships and properties are described here.

Chapter 6 describes simulation studies that have been used to demonstrate and
validate the model for both high level prbgram execution experiments and low level

synthetic experiments pertaining to calculation accuracy.

Chapter 7 exemplifies the use of the model in a cache memory design study. It
shows how the SMP model might be used as a comparison tool used in describing

the impact of design choices on system performance.

Chapter 8 describes model extensions and problems that may be considered in

further work.

Chapter 9 is the conclusion.

[T

CHAPTER 2

PERFORMANCE MEASURE DEFINITIONS

The performance measures defined here may be partitioned into four basic classes:
user class performance measures; PE class performance measures; GRM class perfor-

mance measures; and ICN class performance measures. Each will be described next.

2.1. User Class Performance Measures

This class of measures is indicative of system performance as seen by system users,
e.g., programmers. The measures reflect the performance of "high level” behavior such
as execution times and response times to user input. Previous models have not been

capable of predicting these quantities directly. The main quantities of interest here are:

e State transition times - these are the times required to traverse a given program seg-
ment. Note that users may perceive that transition times (of which program execution
time is a specific case) are random variables because transition times depend on charac-
teristics of input data and/or the sequence of conditional branches taken at runtime.
This uncertainty in transition times reflects dependence on decisions made by programs

as a result of input data values.

Notice that the majority of programs behave as finite state machines where transi-
tions are either taken or not, there may be no random trajectory associated with typical
programs when given the initial state of the system. (The exceptions are those programs
that use random numbers to make decisions.) In other words, for a given initial state of
the system, the program trajectory may be predicted in a deterministic manner. Due to

uncertainty associated with input data and its effect on program execution trajectory,

13

14

users may percesve execution time as a seemingly randem quantity. (Operating system
effects are ignored in this discussion.) Although typical programs only behave seemingly
randomly, the model uses the approximation that they actually behave raxidomly. Note
that contention for GRM’s induées some actual randomness into a less than actually ran-

dom program trajectory.

Since the assumption of actual randomness approximates seemingly random
behavior, effort has been directed toward determining the appropriateness of this
approximation. In retrospect, it has been found that this approximation works well in

many circumstances, even where it was not expected to hold.

Consider, as an example of the use of transition times, the development of a simple
system model of job execution. Figure 2.1 indicates some obvious possibilities. These
models view servers (composed of a CPU, main memory, required disks, etc.) as servers
for a job queue. The job queue might be modeled as an M/G/1 or M/G/P system.
Paramount to using an M/G/P model is the determination of the first two moments of
job execution time. The model developed here may be used to obtain the first two

moments of job execution time.

State transition times in programs may be used to predict response times. For
example, suppose a program checks a message queue upon entering any state in a set of
states, then set transition time moments may be used to predict message response times
and, for example, message queue lengths. Details will be defined and derived in chapters

3, 4, and 5.

Note that state cycle times (the time between entries to a given state) represent
loop execution times in the case of recurrent states. Loop cycle times or their inverses

represent ezecution rates.

An obvious application for execution time statistics is in program design and the
physical organization of data structures in GRM's. If no data or instructions were
stored in GRM’s then there would be no degradation effects, on program p, due to

resource contention. The model may in theory be used to optimize execution times.

Along with all performance measures defined here will be associated potential
values denoted by a " over the corresponding quantity. These are computed by assum-

ing no resource contention. (This may not always be a feasible operating point of the

15

T

Figure 2.1 Simple system models.

system, chapter 5 discusses this.) They are useful in determining what might be achieved
E and in describing the behavior of a system which employs, in same manner, perfectly
synchronized PE's. The potential values provide hard bounds on system behavior within

the accuracy of the model assumptions. Potential values may also be used as objectives

for comparison purposes. They provide a convenient measure of the amount of " process-

ing power” lost due to resource contention.

2.2. PE Class Performance Measures

These performance measures are PE hardware performance measures. PE class per-

formance measures are, for example, related to PE utilization and timing. The measures

i. of interest in this class are:

. PE utilization - The fraction of time that a PE spends not referencing GRM’s. As
m such, this measure indicates the "locality” of PE activity. If a PE’s utilization is

high then most PE time is spent in local computational activities, e.g., instruction

18

execution or local memory accesses. Define this to be ¢, for PE p, 1 < p < P.

Potential PE utilization (5,) - This potential value indicates the inherent locality in
PE p’'s program and its use of local hardware. It indicates the amount of PE utili-

zation that can be achieved if there is no GRM contention.

Relative PE utilization (¢,) - This is the PE utilization obtained when P programs

are executing, relative to the potential value: £, = ¢,/4,. 1- ¢, indicates the frac-

tion of ”processing power” lost to GRM contention. ¢, is more directly useful
than ¢, or ¢, in that it indicates PE utilization relative to its maximum. Note

that &,, ¢,, and ;, are not sufficient for comparing alternative programs which
accomplish the same task. That is, two alternative programs may display opposite
program execution times and ¢,'s. One may have large program execution time
and high processor utilization while another other may have small program execu-

tion time and a lower processor utilization. Notice that the amount of PE utiliza-

tion lost to contention is ¢, - ¢, .

Coefficient of variation of PE request streams - The coefficient of variation of the
time between PE request emissions indicates the amount of "randomness” in the

request emission stream. Define this to be VPJ for PE ;. Note that this quantity

exists formally if and only if the request intermission times are independent and
identically distributed. This is certainly not true in most cases, it is though a typi-
cal approximation made in modeling [Kue79, MuM82b, MuM82c]. If Ve =0, then
the stream is highly deterministic; if Vp) = 1 then the stream is "near” a Poisson
emission stream; Ve >1 indicates hyperexponential behavior. This quantity indi-
cates the susceptibility of the system to "PE synchronization”. The term PE syn-
chronization will be used to describe the phenomenon which occurs when PE’s
alternate request emission because of request collisions during previous resource use.
An example of this phenomenon will be seen in chapter 8. Intuitively it may be
seen that there is higher susceptibility of the system to synchronize it all or several

Vp are small (VPJ represents the coefficient of variation with queueing included, a

1

|

2.3.

17

potential might also be a useful quantity here) than if several Ve =1, where there

is sufficient randomness to ensure that synchronization will occur with negligible

probability. The set of Ve informs the model user about the likelihood of PE syn-

chronization. Although other parameters or quantities also determine the likelihood

of PE synchronization (request rates for example) the utility of Ve, should be clear.

GRM Class Perfcrmance Measures

GRM class performance measures concern the behavior of the system resources.

The measures relevant here are:

GRM utilization (p,) - The fraction of time that GRM m is in use (over an
appropriate interval defined by the model restrictions). This is predominantly the
measure considered in previous models [Bha75, Hoo77, MuM82a, Pat79, Rau79,

SeD79, Smi74, Str70].

Outside observer’'s queue length (1‘7,, (¢), at time t) - The number of requests in the

GRM m queue at time ¢.

{]

Connection time (X, (n)) - The connection time for the n™ connection between

GRM m and any PE.

Request arrival stream coefficient of variation (V) for GRM m) - This is the coef-

ficient of variation of the time between request arrivals at the GRM m queue. [t
indicates the amount of randomness apparent in the interarrival time and hence the
waiting times experienced by arriving requests. Again the assumption that a
renewal process exists at GRM queue inputs must be made, such is not the case in

reality.
Request rates of flow evident in the system in the steady-state.

GRM utilizations have typically been the performance measures predicted for mul-

tiprocessors of the sort considered. GRM utilizations, though, do not provide particu-

18

larly useful information regarding PE and user class statistics. From p, it is impossible
to predict, for example, loop cycle times as described above. (Some ”backwards” calcula-
tions may be used to find waiting times from p, in special case models.) Some informa-
tion may be obtained by using p,, in comparisons with other measures. For example, if
¢,'s are low and p,'s are high it could be concluded that system operation is global
resource service time bound. That is, GRM’s are in use for a larger fraction of time
than PE's are, hence to increase processing speed (decrease execution time) a design
choice might be to increase GRM speed. The amount of increase would be reflected in

the user class measures.

The pair ¢,, p. (and possibly potential and relative values) may be used for intui-
tive comparison purposes relating to bottlenecks. The inclusion of the ICN in these

measures might be done when it impacts system performance.

2.4. Virtual Crossbar Performance Measures

The quantities in this class are related directly to GRM activity but will be defined

separately, they are:

e Bandwidth (B~(t)) - the number of connections in existence between PE's and

GRM'’s at time ¢. {B(¢), t > 0} is a fairly complicated stochastic process in general,
as will be pointed out. Time limiting mean values will stressed. Time limiting

pmf’s might be derived for the number of connections in use.

e Rates of request flow - these will be introduced as required.

"y
a

CHAPTER 3

MODEL DESCRIPTION

This chapter describes the SMP model framework. A PE state diagram is
described, one is specified for each PE in the system. The PE state diagram (or stochas-
tic finite state machine) consists of two types of states: computation states; and refer-

ence states.

The set of states in the p™ PE state diagram will be referred to as 4,. The set of

computation states in PE p's state diagram will be defined as Qc, - Similarly, the set of
reference states in PE p’s state diagram will be termed QR,. States in PE state diagrams

are either in Q¢ or Qg so (¢ | Jg, = 4,, 1, MNr, = ¢.

Qc,, Qa, and the graph joining their elements partially form the behavioral charac-

teristics of PE behavior. Computation states are occupied while PE’s execute internal
operations, i.e., while they are not using global resources. Reference states are occupied
while PE's reference GRM’s. A PE may be waiting for service in a GRM queue or using
a GRM during reference state occupation. The PE state diagram describes the transi-

tions between computation and reference states.

The PE state diagram depends directly on system operation. It may in some cir-
cumstances represent program execution itself. Alternatively, it may represent low level
PE behavior. That is, it may reflect elements of PE behavior using renewal based

representations. Consider two examples to clarify the point.

First, consider an example of a high level description of PE behavior. In the exem-
plified system, processor instruction code and local data are stored in local memory (a

system controller or operating system loads the program code into its assigned PE local

19

20 |

memory) and GRM’s store global data or large data structures. As an example of pro-]
gram execution on this system consider a bubble sort program (whose flowchart is shown |
in figure 3.1) where a list of length n is to be sorted. The list data is stored in GRM's I

due to the size constraints of local memory.

An appropriate PE state diagram that describes the bubble sort program is shown
in figure 3.2. States in the original program that concern operations internal to PE’s are

computation states in the PE state diagram. Note that in general the mapping from a

TOP = n 1
¥
e =g
> j=1 2

L{1.n] is the list of cata

Figure 3.1 Simple bubble sort program.

:

B

source program to an appropriate PE state diagram is not unique. For example, figure
3.3 is also a valid PE state diagram. Source program states may be lumped to form a
smaller PE state diagram. Conditional branches prevent a lumped PE state diagram

from consisting of alternating computation and reference states.

Note that the time to move from state 1 to the final state 11 is the execution time
of the program. The transition time in the corresponding PE state diagram is the execu-

tion time for the program.

PE's emit requests for GRM connections at their entries into reference states. That
is, when a PE enters a reference state, it emits requests (for service) for the chosen
GRM'’s. The formulation shown in chapter 4 assumes that one request is emitted when
a PE enters a reference state. The reference state is said to terminate (in the single
request per PE case) when the associated service has been completed. The GRM's
chosen (i.e., the GRM's referenced) are determined by the resource system design and
the layout of data in GRM’s.! For example, if the GRM chosen is given by the lower
[log:M] bits of the (physical) address generated by a processor (interleaved addressing)
then the data list may be stored as shown in figure 3.4. Due to PE contention for
GRM’s, program execution time is influenced by data layout and GRM mapping
hardware.

Consider next a system where instructions and all data are stored in GRM's. In
this case a PE state diagram for the bubble sort program may be enormously compli-
cated. Even in this simple program, the inclusion of instructions as computation states
may make the PE state diagram enormous because it may be necessary to consider all
individual instructions in the program. This fact (combined with the use of, for exam-
ple, cache memory) may make it desirable to represent instruction execution with a sim-
ple representative model. The level of description chosen is determined partly by system

operation and partly by the amount of detail desired.

Forms of approximating PE behavior using simple atoms executed repreatedly
might be termed renewal based approximations in that they represent PE activity by

reducing complicated behavior to a simpler approximately equivalent recurrent

'We will assume that only one request is emitted during GRM references. This assumption i3 not too restrictive in
that problems occur if multiple requests per PE are permitted. Chapter 7 illustrates simple exceptions to this assumption
while chapter 8 describes the problems involved in relieving it in general.

22

\) 10
G

Figure 3.2 PE state diagram for the bubble sort program.

1

3a
Processor
Deley
3
s
3
Conpare @ a+7
s
Procassor
CP Ll

drite L{J*1)) B

=EEmEm=m=
\‘
[*-]
+
‘\O

A

Figure 3.3 Alternate PE state diagram for the bubbie sort program.

24

START
f_ GRM 1
GRM 2
»
:/ ’;;
urap

around

v/ v St o
END

Figure 3.4 List layout under interleaved memory mapping.

description, the drawback is that user class measures might not be predictable directly

using renewal based approximations.

For example, if rough estimates suffice and an instruction mix and hit ratios are
known, then an appropriate instruction execution model is shown in figure 3.5 (this will
be the subject of chapter 7). Program execution time may not be readily predicted from
this PE activity model. State transition times now indicate instruction execution times,

they do not indicate directly the source program execution time.

Also associated with the PE state diagram are the state transitions. That is, tra-
jectories are associated with program execution. Transitions between PE states are

taken to be instantaneous so that PE state diagrams behave as finite state machines.

25
”
Initiate
Instruction
Execution
\
y
Ingtruction Instruction Cobal data Data Data Data \
Fetch Fetch
refersnce Read Read urite
Cache hit Cache miss Cache it Cache niss {write
(read instr.) through)

Q)

Figure 3.5 Instruction execution with cache memory.

3.1. The Model, Assumptions, and Preliminary Model Aspects

3.1.1. Overview

The following model description and analysis are organized in an effort to describe

(compute) characteristics of PE state sojourn time CDF’s as follows:

(1) Moments of PE state sojourn times will be emphasized.

Moments of sojourn times may be written in terms of moments of GRM queueing
times and GRM service times.

(3) Moments of GRM queueing times may be expressed (in several approximate ways)
in terms of the sojourn times from 2. It is imperative that queueuing time expres-
sions obtained be independent of the expressions that relate sojourn times to queue-
ing times as written in 2.

—
[3
S’

(4) After adequate expressions have been obtained that relate sojourn times to queue-
ing times and queueing times to sojourn times, the solution aspect of the analysis
may proceed. The solution aspect has not been emphasized, the derivation of
accurate analytic expressions has been deemed more critical than accurate solution
techniques — there is little point to using an elegant solution technique on inaccu-
rate expressions. -

In practice, the simple solution scheme (a matrix based fixed point iteration
scheme) has been found to be fast when compared to simulator execution time (less
than 15 iterations are typically required in order for stable results to be obtained). Two
waiting time formulations have been developed. It has been found that when one does

not converge, the other converges acceptably.

3.1.2. The Model Assumptions

The model is based on the approximation that all P PE state machines (that

correspond to PE state diagrams or programs) behave as semi-Markov processes (SMP's).

More formally, define E,(t) to be the state (the state of PE p will taken to be an

integer from 1 to |A4,|) of PE p at time ¢t. The SMP model ss summarized by taking

-~

{Z,(t), t 2 0} to be an SMP for all p.

The approximation that {2,(!), t 20} is an SMP is equivalent to the following

approximations regarding the sequencing of PE p’s state machine:

At every PE p state transition, the joint distribution of the next state entered, and the
time at which the present state is exited is dependent only on the state occupied at the

present time. Formally, define the following notation:

the state of PE p after
M, (n) = the n™ transition of its
embedded Markov Chain (MC)

By assuming (5, (t), t > 0} to be an SMP, there exists an embedded MC. Let

;
|
|
|
[
\
|
;

27

gojourn time of PE p

]in state s after the

S5 (M) =) 1% embedded MC
ltruns‘itian

Consider some ancillary information available from SMP properties. The approximation

that {2, (¢}, t > 0} is an SMP is equivalent to the following approximation:

Pr(g,,, (n) < ¢, ﬂ:l‘,(n-‘f-l) = j | all previous process (PE) p snformation) (3.1)

= PAS () S 4 M, (n+1) = j | M, (5), s < n)
= P, (n) < t M, (n+1) =7 | M,(n) = 3)

Note that conditions for approximate PE state machine independence may be written:

Pr(gp, (n) <¢, "V}p(n+1) = j | all previous system information) (3.2)

= Pr{S,(n) S t, My(n+1) =j | M, (n) = 2)
By the approximation that {Ep (¢), ¢ > 0} is an SMP, the dependence of :S',, (njon n
may be dropped (state s entry epochs form a remewal process) to give a more concise

form. Independent PE activity may also be wnitten as:

~ ~

PHZ,(t) = sy, Zo{t) =30 .., Zp(t) = 3p) (3.30)

Define the semi-Markov kernel for PE p to be

Q,(idf) = PrS, < t, M,(n+1) =j | M, (n) = i). (3.4)

If the transition probabilities (Pr(x‘:l,(n+1) ==)’(ATI, (n) == i) = P, (sj)) are indepen-
dent of sojourn times, then Q,(i7,t) = S, (t) P, (ij). In this case, PE p enters state i, it
stays there for 5,, units of time and then moves to its next state. The next state is j
with probability P, (iJ), independent of g,,. P, is the one step probability transition
matrix for PE p's embedded MC. &, (f) is, by definition, the CDF of PE p's sojourn

time in state i. The above separability of the semi-Markov kernel seems to be a reason-

able assumption for most programs (or PE state machines). This assumption is not a

28

strict requirement of the model but equations have been written assuming this separabil-
ity exists. Equations could certainly be rewritten to reflect non-separable cases.
Without loss of generality then, we will use the separability to decompose the problem of

studying @, (i.7,¢) into two parts: finding P, (¢,j), and finding S, (¢).

In theory @, (ij,f) may be determined and from it cycle time and state first passage
time CDF’s may be determined. See [MaM82] for appropriate transform equations
derived from [Cin75]. In practice it is too difficult to obtain S, (¢) so that Q, (i.j,¢) can-
not be reasonably calculated. At best the first few moments of sojourn times may be
obtained and from them the first few moments of loop cycle and state first passage times
may be approximated. Due to the fact that assuming PE’'s behave as SMP’s is an
approximation, it would not be worth developing more than the first few moments of

timing measures.

3.2. Determining Transition Probabilities

P, (i,j) represents the fraction of transitions that lead PE p from state i to state ;.
When P, (i) does not depend on time, it is a probability. As an approximation transi-
tion fractions will be taken to be probabilitses. It is an approximation in that it ignores
obvious correlation (time dependence) that may exist in, for example, 'for/DO’ loop exe-
cutions. This approximation has been used and tested during validation studies

(described in chapter 8) with actual programs and has been found to work well.

The deduction of these relative frequencies may be done in many ways. [f a pro-
gram is well understood, then P, (i,j) may be derived from known results. For example,
[Knu73| contains results on sorting algorithms that may be of use in determining transi-

tion probabilities.

An alternative to the analytic deduction of P, (i,j) is an experimental approach.
Relative frequency data might be collected during uniprocessor program experimentation
(since the fraction P, (i,j) is not queueing time dependent in non-real time applications,
this is a "static” data collection process). This has been done traditionally when consid-
ering instruction mixes. There is certainly correlation between instruction sequences exe-

cuted but simple instruction mixes have been used in successfully developing Huffman

coding for op-codes.

29

If P,(i,j)’s may not be determined, a reasonable approach to modeling is to use the

unknown P, (i,j)'s as parameters of the model. This would at least provide parameter-

ized results.

Since loops occur so frequently in program execution, it is convenient to develop

simple techniques for deducing P,(i,j) in these circumstances. First consider the model-
ing of simple 'for/DO’ loops such as shown in figure 3.6. The branching probabilities are

determined such that the first moment of the number of loops executed is equal to K.

imorsny S

This first moment matching results in the distribution of the number of loops executed

(in the model domain) being geometric. That is, loop execution in the model is

for i: = 1to K do
begin
{loop body}

é end;

Figure 3.6 Loop modeling.

30

equivalent to a Bernoulli process (the occurrence of a "heads” in the flip of a coin
corresponds to the exiting of the loop). When using first moment matching in deducing
P, (i.j), higher moments of program execution times (which may be composed of many
internal loops) may be inaccurately predicted. (For example, suppose K = 100 in figure
3.8, then E[number of loops executed] = 100 from first moment matching while the coef-
ficient of variation of the loop completion time is 0.995, this would indicate characteris-
tics "close” to an exponentially distributed loop execution time. Clearly, this is a false
result. To alleviate the inaccuracy in higher moment predictions that results with first
moment matching, an analysis using more detailed program specifications must be used;
or the loop contents may be replicated K times in the PE state diagram.) The primary
concern here will be with first moments although second moments (or at least approxi-

mations) will be required within the analysis.

When loop counts are determined by variables having associated pmf’s at loop
entry time, these pmf’s may be used to find the mean number of loop executions and the
above first moment matching may be done. If loop termination is caused by action

within the loop, data might be collected experimently to be used in the model.

In low level PE state machines (where PE interaction with GRM'’s is described
using a renewal based description of program execution) transition probabilities may
indicate quantities such as instruction mix frequencies and cache memory hit ratios.

These low level quantities are almost exclusively collected experimentally.

The model is also appropriate for system evaluation applications where a set of
benchmark programs would be developed. That is, a set of program representations

could be developed for system evaluation.

3.3. Determining Sojourn Times

The remaining properties of Q,(i,j,¢) are contained in S,, (¢). This section describes
simple equations describing system operation and S, (t). The approach to model solution
will be to write pertinent relationships describing the system and then use them in a solu-
tion scheme described in chapter §. The main emphasis has been on equation develop-

ment and model theory, not elegant solution techniques.

31

Recall that there are two classes of states in the PE state machines: computation

states (QC’); and reference states (Qp). When a PE is "in” a computation state it makes

no GRM references (it is doing internal operations). Reference state timing is composed
of two substates: a state in which PE requests are queued in their referenced GRM
queues; and a state in which they use the desired connection. Then the sojourn time for

PE p in state s when it references GRM m is:

-~

S,y = };’,m +)7,,,,. if GRM m i3 referenced (3.50)

Where 1;’”,, is the queueing time experienced by a request from PE p when PE p enters

state s and references GRM m. };pm is the connection time of PE p using GRM m in
state 3. The CDF Y, (t) maps the length of blocks transferred (in, for example, words)
into a transfer (connection) time. This mapping reflects the speed and design of GRM
m. It could represent GRM RAM speed, disk access time, etc. In general Y,,.(¢)
describes the amount of service time desired by requestor p entering state s using GRM
m. Note that it is this relationshsp (3.5) that would be modified to include ICN delays.
An additive term could be included to represent ICN delays. Contention in ICN struc-

tures may require delay analysis.

Let the GRM chosen by PE p upon entry to state s be chosen according to the pro-

bability mass function 7, . Then the first ¥ moments (we are at most interested in the

first few moments) of S ,, are found from

— ZE[(‘Vpsm + Ypsm)k] Nosm (3.60)

€ o SEQ
Sps"‘ R}

specified by the model user g€ ﬂc’

Note that Y 7, =0 for s ¢ Q¢ , Yinpem =1for 2¢0p (with one request per PE

.allowed in the system). Multiple requests per PE might arise in many ways. I[n general
multiple requests per PE have not been found to be particularly useful in a monopro-
grammed environment except in certain cases discussed in chapter 8. Chapter 8 also
discusses the problems involved with the general case. Equations will be written for the

single request per PE situation.

If this relationship is re-written to display the particular reference involved (say the

n ‘) then:

32

5}:(") = ZE{(}';,psrn(n) + fpsm("))t] Mosm LR ﬂR,- (37)

For every n > 1, P;’,,m (n) and f,,m(n) are independent if there is no dependence of con-

&

nection time (say the n*) on the n* request waiting time. It should be noted that
g

~

W,em (n) 13 dependent on (at least) l;f,,m(lc) and);,,m (k) for k¥ < n. That is, there is
dependence on all other random variables in the system that took on values previous to
the emission time of interest. The history dependent nature of the actual system makes
the problem of accurate modeling difficult. Again, the use of SMP’s in approximating
PE behavior alleviates the history problem at the cost of some accuracy. It will, though,
be important to include the effects from the history of processes in computations for

finding szm. For example, if lim 7,3,,, (n) is large, then a long queue {relative to a queue
R OO
that would form if lim Y, (n) is small) may form behind the n* PE p request as n—co.
A= OO

This, in turn, might cause lim W,m (n) to be large.
L S <4

Throughout we will assume that W,,, (n) converges in the first £ moments, in the
analysis in chapter 4 £ = 2. This is not as strong a requirement as convergence in distri-

bution. Convergence in moments here means the following:

-~k ~k ~k

lim E[W,,,,,,(n)] - E[lim W,,,,,(n)] = E[w,,,] = Wz, (3.8)
b S 4 A=+ Q0

exists (the bounded convergence theorem is used to move the limit inside the expected

value). The history effects may be written as

Wp‘sm(") = F‘ Wpsm(l); Wy‘sm(e}: T, Wp‘sm(n"l)) + H(.) (39)
Where Hle) represents functional dependence on other system quantities (not waiting
times) not explicitly shown in Fe). F is simply a representative function displaying the

dependence of W, (n) on previous values. Subsequently limit existence will be assumed
for Wi,..

To make analysis reason'able, time limiting (steady-state) values will be computed.
Systems studied in simulation tests have been found to reach a steady-state (at least to

within the desired modeling accuracy for those performance measures described above),

typically within a few hundred GRM references. Occasionally attention will be given to-

limit existence in quantities when the analysis may yield new qualitative results.

=

33

The problem of determining the first few moments of §,, reduces to the problem of
finding the first few moments of queueing times. This is covered in detail in chapter 4.
In short, queueing and SMP analyses will be employed to complete the determination of

£
SE.

3.4. SMP Model Parameters

The SMP model parameters that arise (once any necessary reduction of an original
program to its system dependent PE state machine has been done) may be determined

in may ways. To summarize, the parameters and their determination are:

e P, - the one step transition probability matrix for PE p. This is determined either
experimentally or analytically depending on the complexity of the problem. First
moment matching is done to ensure that means are computed appropriately. P, (ij) =1

indicates a transition with certainty.

e 7,.n - the probability that a request emitted by PE p when it enters state s is for
GRM m. This parameter reflects the placement of data in GRM's and the type of func-
tion used to map physical addresses into GRM numbers. Note that the state depen-
dence is convenient for handling special representation for particular GRM’s. In exam-
ples shown later, some GRM'’s are taken to be disk units while others are taken to RAM
(random access memory) modules. This allows certain states in PE state machines to
act as disk [/O states while others represent RAM reference states. 7n,,, = 1 indicates

an emission for GRM m with certainty.

e Y, () - the connection time CDF for PE p using GRM m in state s. This CDF
describes the characteristics of GRM m/PE p interactions. For example, if GRM m is a
RAM module, then for simple read/writes the connection time CDF s
Y,em (t) = u (¢ - access time). For semaphore read/modify/write operations, Y,,, () would
indicate the amount of time required for an uninterrupted GRM connection. The mani-
pulation of data structures that are stored in one GRM (for locking purposes) may be
modeled ‘in a unified manner by setting Y,,. (¢} appropriately. For disk modules, Y, (t)
might represent a seek time CDF. This parameter may be varied to study resulting per-

formance changes in an effort to optimize system behavior and cost.

34

e S, (t)- for s ¢ Q¢ this is the CDF of sojourn times for computation states. Hence this
indicates the "speed” of PE local computations. Again, this may be varied to study the
effects of changing PE speed on system performance. For ¢ QR’ moments of S, are

computed values.

3.5. Previous Models

3

Models that have been developed for memory interference [BaS768, Bha75, Hoo77,
McC73, MuM82a, Pat79, Rau79, SeD79, SkA69, SmiT4, Str70] are special cases of the
SMP model in their representing processor activity as an alternating renewal process (an
ARP, a two state SMP as shown in figure 3.7). They have done an accurate job of
predicting p, under special circumstances (described in the respective references). The
utility of these models is limited to predicting GRM and PE class performance measures
because of their assumption of low level PE descriptions. These models are based on low
level system operation statistics such as the mean time between a GRM connection
release and the next request emission. It will be seen that within the approximation that
Wom (t) = W, (t) (independent of the state), an SMP may be reduced to an ARP to

obtain PE and GRM class performance measures.

[Ram85] considered the simple analysis (employing unsophisticated techniques that
are more naturally handled using techniques described here) of a program modeled as a
Markov chain, uniprocessor behavior only was considered. This corresponds to the

model here with unit sojourn times and potential value results.

3.8. An Exact Approach

An exact approach to modeling system dynamics of the sort described here entails

the study of an inherently transient coupled process such as {(T,, (t)),.; ¢ > 0} where

~

T, (t) 18 the amount of time spent by PE p in state s during [0,¢). The formulation of
this approach would require the derivation of systems of probabilistic equations — the
approach would certainly be complex. It is believed that a transient analysis approach
would prove to be more expensive (for the solution of the model equations) than pro-

gram runs or simulations themselves. The formulation would also yield complicated

35

{]

Computation Reference
State State

Figure 3.7 Simple ARP description of a PE.

~

time dependent CDF’s (T, (t,a) = Pr(T,(t) < a) for example) whereas the first few
moments may suffice for the measures described in the SMP model. A purely analytic
approach may yield such complicated relationships that nothing could be deduced from

the results.

3.7. PE Independence

The model relationships that follow in chapter 4 are based on PE's behaving rela-
tively independently. This approximation is most accurate in a general purpose, mul-
tiprogramming environment. The requirement need not be exactly satisfied, loose cou-
pling will suffice as an approximation. Hence PE’s (or more properly, the programs exe-
cuting on PE’s) which display infrequent communication or asynchronous communica-
tion with low message passing rates are the most applicable for the model. If PE state
machines communicate through data structures infrequently, then it is reasonable to
regard PE state machines as being statistically independent except through state occupa-
tion coupling caused by resource contention. Extensions of the model presented here
that enable it to handle process communication using message queues (kept in global

memory) are possible but have not been tested, see chapter 8.

36

3.8. Fundamental SMP Relatlonships

Elementary relationships and relevant facts regarding SMP behavior will be
described, they may be found in common sources such as [Cin75, HeS82, Ros70].

Throughout the motivation will be that used in the context of describing PE p’s SMP, so

consider the stochastic process to be {E, (), t > 0}.

Consider the fraction of time that {Z,(¢), ¢t > 0} spends in state s during an infin-
ite interval. This fraction is only non-trivial for all states when the process is recurrent

(non-null) for all s ¢ A,. This in turn occurs for non-transient processes, that is, where

any final (terminating) states in {Z,(t), ¢t 2 0} are connected to the PE's initial state,

thereby simulating an infinite loop of program executions.

For example, figure 3.8 indicates the appropriate modification for an SMP with
three terminal states. This "infinite loop” approach allows the model of the system to

reach a a non-trivial steady-state.

" Figure 3.8 SMP loop construction.

4
|

37

Placing SMP’s into an infinite loop makes transient and terminal states recurrent.
This allows moments of execution time to be computed without calculating CDF’s of
transition times. That is, moments of transition times from an initial state to a final
state may be computed by calculating the cycle time moments for the initial state after
it has been connected to the final state. (A synthetic final state of negligible sojourn
time might be imposed if necessary.) This ability derives from the fact that entries to
state i form renewal epochs of a renewal process, hence steady-state results may be
easily computed. Statistics may be computed regarding the renewal process created by
the synthetic loop in a simple manner. Note that this is a much simpler solution process

than the approach of computing the CDF of the transition times and then the moments.

A related point that must be addressed is the elimination of trivial initial states in
PE programs, they contribute a known or negligible amount to execution times and may
affect (adversely) resulting computations. Figure 3.9 shows an example. The state space
resulting from the elimination of initial states will be termed the reduced state space

(terminal states are connected to initial states in the reduced state space), call this A;.

Figure 3.9 Initial state elimination.

as

Define p,, to be the fraction of time that the reduced process {E,(:), t > 0} spends
in state s over an infinite interval. Consider {Z, (), t > 0} to represent the reduced pro-

cess from now on. Then from the approximation that {Z, (4), t > 0} is an SMP:

¢
- 1,7 dr
700 Ss { {Z, (1) = s}

Pps = m = lim ———— (3.10)

keA"
Where 7,, is the embedded MC steady-state transition fraction (or probability if it

exists) computed by solving x, =x,P,, Y 7, =1 x, is a row vector
s A
L4

(Tt * ’”pm'l)‘ Note that p,, appears to be first moment dependent on sojourn
y

times. In the application here though the first moments of sojourn times (5,.) are
dependent on higher moments of sojourn times. The dependence may be insignificant in
some cases but may at times be quite pronounced. Hence, (3.10) is slightly deceptive in
this respect. This relationship does help to explain though why system utilizations are
primarily dependent on first moments of sojourn times as was experimentally noted in
[Smi74]. The dependence on higher moments (although it may be slight) results from a

detailed analysis of mean queueing times. In a general queueing situation (i.e., not a spe-

cial case such as an M/G/1 approxiniation) the queueing time CDF is dependent on the

CDF’s of the arrival and service processes (the Lindley integral equation describes this in
an idealized single GI/G/1 queue, [Kle75]) especially in a closed system. It is natural for
the mean to depend on higher moments. This fact explains PE synchronization seen in
simulation experiments. The dependence is an interesting (and unexpected) result of the
queueing analyses in chapter 4. In most cases, the first moment of queueing times is the
dominating factor in determining mean sojourn times, although the dependence on

higher moments may occasionally be great.

It is interesting to study the conditions under which Pys 18 a probability:

Py = limPrZ,(t) =) (3.11)

t—c0

Pys as described in (3.10) is always a fraction, it is also a probability as in (3.11) in

L]

H
312.

39

. 2 ~ . .
several cases: when the cycle time?®, defined as C,,,, for successive entries to state s has

a density on an interval (see [Cin75, HeS82, Ros70]) or we assume that {2, (6),t >0} is

ergodic. p,, is also a probability in another simple case:

Since the system under consideration is based on a discrete clock (at some level,
there may be different clocks for different PE’s, this is unimportant) these cycle times
are certainly not absolutely continuous (they do not display a density on an interval).

The transition points (i.e., jump points, or discontinuities) of C,,, (t) determine in what

sense p,, i3 a probability. If C,, has lattice distribution (that is, transitions in C, (¢)
occur on integral multiples (> 1) of a fundamental time period termed the "span’ or

"period” of the process) then p,, from (3.10) is a probability as in (3.11) at the time lim-

iting lattice points limPr(Z,(n) = g),n — oo, n € { lattice points for 5,,,}. If 5,,, is
discrete but of unclassified nature, the p,, as in (3.10) is a probability at the transition
points of C, (¢). For times between transition points (and a general discussion) of limits
on Pr{Z,(t) = s), see [CinT5].

The limits have ramifications in approximations used later. For example, since
PE's described here are based on a clock, the clock period determines the times at which
PE state occupation fractions may be used to represent probabilities. This is important
in that if a PE is viewed (by another PE, or an outside observer for example) at lattice
points, then (3.10) may be used as a probability, but if the PE is examined at non-lattice
points, then the use of (3.10) as a probability is an approximation. Since outside
observers "see” averages, (3.10) may be used to predict outside observer statistics, con-
versely, since PE events may not occur at these special "Poisson” times, a PE viewing

another PE at non-lattice time may not "see” the fractions as probabilities.

A useful relationship that is readily available is:

Sps — ”ps Sps
»

L3 - Z ﬂpt §pk | (312‘)

r
sz’

_ This provides a relationship between mean loop times, sojourn times, and p,,. The
approach to solving model relationships (to obtain a prediction) will be to determine :S';s

indirectly as a function of p,,. Then (3.12) may be used to determine p,; as a function

2The terms loop time, recurrence time, and cycle time are used synonymousiy here.

40

of S,.. Note that (3.12) provides a straightforward relationship for determining mean

state loop times -- one of the performance measures previously defined.

Important quantities in SMP analysis are the transition times for states to sets {of
states) and from sets to sets. These are important in predicting moments of response
times and mapping a given PE state machine to a "nearly” equivalent two state ARP

activity model.

Define T, (i) to be the time between leaving state i ¢ A and entering any state in
? » g any

Q1 C A,. To compute moments of T, (5,Q) for given i and (Q, in a similar manner to that
used in [HeS82], condition on the state entered upon leaving state i. This approach
gives:

-~ -~

T(iQ) = L oxP (i) + X E[{Sn + T,(j,n)}‘]xp,(;;,)

182 ;cA‘;’.‘-ﬁ
- . (3.13e)
= ¥ E[{s,, + T,(j,m)}*] P, (i)
;eA; -0

Which forms a relationship between T—'f(i,ﬂ) for all i ¢.4]. Note that because 7:, (7,23) is

the time required to traverse an SMP from state ; to a state in (I after leaving state j
(see figure 3.10), 7:9 (7,Q) is independent of §,,,. That is, given 5,,, =, T~, (7,92) is not
influenced by !:«:,, due to the sequential nature of the SMP transitions.

As many moments as required (say k) are computed in a recurrent manner,

moments 1,...k-1 are used to find the £* moment. To compute T, (i) for a given Q,

equation (3.13) becomes a vector-matrix equation AT, () = 1.

From TT“(:',Q) the moments of transition times from a set to a set are computed
directly. Denote by 27((21«»02) the £* moment of the time between leaving set 0,C A
(any state in () and entering set 2, C A,. These moments are computed by condition-

ing on the state i ¢ (2; that was left when set (, was exited. Then unconditioning gives:

Srenvenm

41
- >
P .
Leave Leave
state 1 Stata § Enter

time ——»

Figure 3.10 Set transition time independence.

THQ, — Qo) = ¥ THi o
T,{Q — Q2) ‘(‘_;a!Tp(QOQ) S
Jeky
T THi Q) -2
T P (40e) ’, (3.14¢)

These calculations may provide further information regarding process execution
timing, for example if Q@ = {i} then T(Q — Q) = C,, - 5,,. If Q is-a set of states that
represents an appropriate action (for example, suppose a program checks its message
queue upon entering any of a set of states, then set transition times are required to com-
pute moments of the time between queue examinations), then these transition times may

represent moments of response times.
Aside from the utility of :ff,(i,fl) in predicting set tramsition times is its ability to
reduce a given SMP to an ARP with approximately equivalent GRM and PE class -

behavior. The temporal averages are maintained in the equivalence, although the

42

instantaneous behavior of the two processesvare different. This reduction relies on find-
ing the first ¥ moments of an equivalent computation time state (state 1 in figure 3.7).
Here k represents the maximum number of moments that are deemed required within
the model approximation accuracy. For example, waiting time calculations described
later require the first two moments of computation state sojourn times. Previously
developed models of the ARP process description require the first moment of the ARP
computation state sojourn time. To find the first ¥ moments of the equivalent computa-
tion state sojourn time, set {1, = (1, = QR, then §3’ = T-f(ﬂg, - QR’). This provides a
means for computing ARP description quantities from the original SMP. Note that
because Bernoulli loops (used to represent iteration loops) only match the first moment
of loop counts, higher moments may be inaccurately predicted unless the actual program
is close to an SMP. That is, because first moment matching is done in finding the tran-

sition probabilities, error may occur when attempting to compute higher moment values.

3.9. Measure Derivation In the SMP Model

Expressions for many of the SMP model performance measures are described next,

those not covered are expressed in chapters 4 and 5.

3.9.1. PE and System Utilizations
Consider PE p’'s utilization, it is given by:

¢y, = Z Pos and ¢, = Z F;ps

szﬂc’ szﬂc’ (3'10.)
Where p,, is the potential value corresponding to p,, :
}; - Tys Sps
pg T e
E 7ot S (3.18)
) I:eA,' '
and
. §” L QC’
S, - — -
ps S Vyem Npom 2 € QR’ (3.17)
m

AR

43

From this it appears that ¢, is a first moment property, but again it must be noted

that S,, is actually a function of higher moments. The dependency is very complex and

approximations (only) will be shown later in chapter 4. ;,, is a first moment dependent
quantity.

Again, relative PE utilization is computed directly:

¢
& = — (3.18)
%

Note that a uniprocessor achieves its potential so § = 1 for a uniprocessor. A system

utilization might be defined:

3
§== (3.20)
b

These definitions represent relative importance of various PE tasks. For example, a
few PE's tasks may be designated as important relative to other tasks. ¢ could be
defined to be most influenced by the important PE’s so that ¢ measures system utiliza-
tion with high priority tasks appropriately affecting system utilization. ¢ could then be
used as a comparison measure of system utilization. This particular measure has not

been extensively used.

3.8.2. GRM Utlilizations

Since these quantities are not directly available from SMP results, they must be
derived from system behavior. First define the following rates which are useful in them-

selves:

Npsm == rate of request flow from PE p to GRM m due to stale s (3.21)
N, == rate of request flow from PE p to G{?M m

rm

Xa == rale of request flow into GRM m

44

N, == rate of request flow out of PE p

The following relationships exist among such data.

Apm = Z Apsm

scA;
An = Z,I Aom (3.220)
Ay = Z Z Apem = Z Aom

M oscA) m

Apply the theory of rewards in SMP’s [Ros70| to compute X,m 28 follows:

- Josm (3.23)
define r (Z,(t) = S Z,(f)=a
0 otherunge
r, (/) indicates an emission (reward) rate of Tonm o for GRM m during the time that pro-
n

cess p is in state j (n,, requests are emitted for GRM m in an average of S,, time units,

hence the ratio is a mean rate of emission). Then

¢~
f ri(2,(r))dr
o = i 2y
= Y r(Kpu (3.24e)
ke A"
- Npsm »
T —mr—— Dys
Sys
This gives a simple and intuitive calculation for the process p emission rates. Note that
S,
Apom = 22 5 =" from the fact that Py = =
SPS pss Cps,

Define X, (n) to be the connection (service) time of the n** connection between a

PE (any PE) and GRM m. Then let lim XZ(n) = X be the ¥ moment of the steady-

A0
state connection time for GRM m. Assume that the limit exists. X is computed as (see

figure 3.11 for a graphical representation):

45

xu- />‘;

(3.250)

Notice that fractions (A, /),) are used here to approximate probabilities. This is inac-

curate when the limit does not exist: consider that case where arrivals are not indepen-

dent. For example, if PE request arrivals alternate -- one arrives from PE i then one
from PE j, and another from PE i, etc. - and mean connections are not the same for all

requests, then no limiting mean exists for the connection time. The calculation (3.25)

® o~k

Z ‘YM(J)

. ;=]
lim

gives a request average mean: XF=

-t OO n
The use of fractions as probabilities is correct however if we are interested in the
moments for an arbitrary time limiting outside observer’s examination of the connection
time random variable. That is, it provides the connection length random variable statis-
tics at a time limiting Poisson examination time (not to be confused with the ezcess con-
nection time that may exist for the time between the examination and the subsequent

release of the connection).

416

There are at least three ways of calculating GRM utilizations, p,. The first and
simplest comes from queueing theory [GrH74, Kle75]:

Pm = X;fm == Z Z xpsm ?psﬂl = pr"‘ (3.25‘)

14
? SZA, 4

Where p,, is the "work load” (utilization) brought to GRM m by PE p. In particular

Pom = 3 Mysm Ypem - This is the formulation used later in chapter 8 examples.
seAS
»

The next approach is based on viewing the GRM m server (controller) at a random
point in time ({) as ¢t — oo. (That is, let the system be in its time limiting steady-state
at t.) Define a PE to be using GRM m if it has a request in queue m or is using GRM m.
Then:

Pm = Pr{GRM m is busy at t) = 1 - P{GRM m is idle at () (3.27)
Pr{GRM m is idle at t) = Pr{all PE's are not using GRM m at t)

= Pr{PE ! i3 not using GRM m at {,
PE 2 i3 not using GRM m at ¢,

PE P is not using GRM m at t) V

= Pr{PE I i3 not using GRM m at ¢ | PE’s 2-P are not)
X Pr(PE 2 1is not using GRM m at t| PE's 3-P are not)
X Pr(PE 3 is not using GRM m at t | PE’s 4-P are not)

X Pr(PE P-1 is not uging GRM m at t | PE P is not)
X Pr{(PE P is not using GRM m at ()
If PE's are taken to be approximately independent, then a simple formulation may be

written:
Pr{GRM m is idle at t) = []PrPE p is not using GRM m at) (3.28)
»
Then:

Pr{PE p i3 not using GRM mat t) = E (1 = Npsm)Pps

r
scA,

Recognize that dependence between PE. state occupations at time ¢ (because of GRM
contention effects) makes this an approximation. An alternative technique might be to
compute these conditional probabilities (or fractions) in an effort to increase accuracy.

That is, to compute state occupation coupling between processes. The queueing

h

47

approach has been used due to its simplicity.

The last obvious calculation for GRM utilizations is simply a variant on the
approach above at time t. Here term "using” to mean accessing the GRM resource, not

including time waiting for service.

This is based on viewing GRM m at time ¢ but using a sum formulation.

pm = Pr{GRM mis busyat!

or PE 2 is using GRM m at ¢,
(3.29)

, or PE P is using GRM m at t)
Since use of GRM's is disjoint (e.g., not two PE’s may simultaneously use a GRM), then

the "or” condition may be evaluated using a simple sum:

Pr{GRM m is busy at {) = Y ,Pr{PE p is using GRM m at 1) (3.30)

4
Notice that each reference state in a PE SMP may be viewed as the successive occupa-
tion of two substates: one in which the PE request is in the GRM queue; and one in
which the PE uses the GRM. Then if ¢ is a random (Poisson) time an appropriate for-

mulation is:

PrPE p i3 using GRM m at t | PE i3 in state s at t) (3.31)
Yyom

= npsm T ————
Ypsm +)Vpsm

Then unconditioning with the general time probabilities for the probability that PE p is
in state s at time ¢ gives (again we know that the SMP’s are not independent so that

this is also an approximation):

PrPE pis using GRM matt)= 3 n {-———-17-—’-3—"———-};) 3
Sinn’ P Ypsm + LVpsM ” (.32)
Therefore,
?Sﬂ
Pm = b) Mosm l-?_———-—p——:.?—']p
ZPS (Lf;x 7 Ypsﬂ + Wpsm ” (3'33)

48

3.10. Previous Models Revisited

Previous models have used the SMP in figure 3.7 as their PE behavioral description
(some earlier "no think time” models even used a one reference state description of PE
behavior). It might be said that the low level models have assumed that PE’s do indeed
behave (approximately) as ARP's. The waiting time approximations developed next sup-
ply some information regarding the applicability of this assumption. The SMP model
reduction technique displays an analytic 'approach for finding the low level data previ-

ously acquired from instruction traces or simulations.

The reduction does not guarantee full temporal equivalence in that there may be
timing differences between the ARP representation and the SMP representation, see fig-

ure 3.12 for an example. The equivalence is in the time limiting averages.

T = 1.0
Computation
$=1.5
Reference [
Y = 10.0

l m——

Computation]

Y

wiwution Refarence k
S :2.0 Y =150)
Reference

= 2000

SMP ARP

Figure 3.12 The SMP to ARP reduction results.

49

Consider computing the equivalent computation state sojourn time described in fig-
ure 3.7, again it is given by:
'
5% = T;(w, — g, (3.34e)
Equivalent reference patterns are computed similarly, define 7, to be the probability

that an arbitrary request emitted by PE p, as the system reaches steady-state, is for

GRM m. Then

’ . v ﬂps
Tom = 5 My = (3.350)
s ey ?Qg’
14

Define Y;» to be the £* moment of the equivalent connection time (the connection

time for state 2 in figure 3.7), then:

Jru— — Mg Mosm
VeI = v OYE P8 ip
pm psm z
s c‘ﬁ, ﬂp] npju (336.)
» 7¢8g
14

where the product 7,, 7, represents the probability that the PE p request is from state
s and GRM m is chosen when state s is entered. A sort of embedded GRM reference
MC is apparent within the normal embedded MC formed by the transition points of the
SMP. The state of the reference that caused the connection is unconditioned out of the
statistics with the embedded reference chain’s state s, GRM m reference occurrence fre-
quency.

Notice that the quantities 5,1;" , n;,,, and Y,,,,.E " are low level quantities that may be

measured at the hardware level. Since the above technique displays an analytic
approach for finding low level data from program specifications, the SMP approach may
be used to obtain low level data. The rates defined above may be rewritten using the

defined ARP representation:

nl
Nom = =7 (3.379)
?

X,m loses its meaning in the context of the ARP representation.

Expressing the performance measures as above with this ARP representation gives:

- -

Sl ~ Spl
¢p = '7-?7" ’ ¢p == =y =77
G Sp + X Yomm

50
Pm = prm Ypm (3.33)
»
- 1 -
Xm = - :\m Y',,m
Am 7

High level computation state cycle times have no explicit representation in this PE
activity representation.

Note that previous models have not dealt greatly with waiting time calculations
explicitly. They have done a good job of predicting s» (given the low level data) using
first moment analyses only, but inverting p, into W,,,. (in an asymmetric case) is
unsolved. Chapter 5 discusses the problems with the inversion of p, into W,m. Due to
this problem, new techniques have been devised for computing W_,ffdirectly. They are

covered next.

il

CHAPTER 4

WAITING TIME CALCULATIONS

This chapter details the remaining calculations required to solve the model equa-
tions. The solution technique that has been used to solve the model equations is a sim-
ple fixed point iteration scheme that uses sojourn time moments as variables of the solu-
tion scheme. It is depicted in figure 4.1. The relationship that maps S,, into p,, is
given by (3.10). This chapter shows the relationships that map p,,'s into Wr.'s which

in turn gives S 's from (3.8).

Before proceeding with the analysis an attractive alternative to computing waiting
times analytically must be mentioned: a simulator could be developed to predict waiting
times more accurately. The simulator would be written to operate at the level of the
equivalent ARP PE behavior description. Initially, analytical approximations will be
developed in this chapter. Using these results, requirements for a simulation solution

will be described.

4.1. A State Space Reduction Technique

A technique has been developed that maps a given SMP (a PE state diagram) into
an approximately equivalent two state representative process (the ARP). This is impor-
tant as a computational efficiency aid, and is a result of the SMP model which serves to
unify early models that used this two state representative process. Details of the reduc-

tion and properties are pursued next.

The reduction provides a technique for obtaining ARP parameters from a given
SMP. The reduction of a given PE state diagram to a nearly equivalent ARP descrip-

tion allows economical computations to be done for performance measures including: PE

51

52 : i

s ™
Requce all SMP's
to ARP's
.)
4
r ™
Compute ARP
sojoum tmes

J/
y
(:uum'tasmmngw
times

Compute S
ro Corwergerce? TES perfarmence H Aralysis

Figure 4.1 Simple fixed point solution scheme.

and GRM utilizations and coefficients of variation; connection time moments; request

flow rates; GRM queue lengths; and to some extent, GRM waiting time moments.

There are two interpretations of the SMP to ARP reduction: they are computation-
ally equivalent (i.e., using either the SMP or its ARP during the model solution will yield
identical results); or waiting times are approximated as if they were state averages, that
is, for each GRM reference a PE request perceives the waiting time averaged over all
reference states. (This is analogous to the approximation that in queueing networks the
source of a customer does not affect its waiting time statistfics - if a customer enters
queueing station i from either station j or k it will see the same waiting time statistics

regardless of its source of entry.) Consider the equivalence interpretation:

ﬂf

~

53

The equivalence in the above measures depends on the approximation that
Wi =~ Wie forallseA] (o)
holds to within the desired modeling accuracy. That is, that the first ¢ moments of
request queueing times are emission state independent. If this approximation is
appropriate, then the reduction of a given PE state diagram to an equivalent (in PE and
GRM class quantity prediction) ARP may be done. The reduction decreases the cost of
subsequent computations. After PE and GRM class quantities have been computed, the

high level timing quantities may be computed using SMP results from (3.8) and (3.12).

ARP computation time, connection time, and reference pattern statistics are com-
puted from chapter 3 (3.34 - 3.36). These quantities are not subject to the applicability
of the SMP to ARP reduction, they result from averaging SMP quantities to get the
equivalent ARP values. The equivalence between the SMP to ARP reduction and

WE_ = WE, is justified as follows:

psm m
(1) Assume W}, = W[, then every reference state in the SMP may be partitioned
into a series of two sub-states: one which accounts for queueing time — this sub-
state's sojourn time is W7, = W}, and is emission state invariant hence it appears
intact in the ARP reference state; and the connection sub-state -- which has a state

average connection time CDF Y,:,,(t). The ARP reference state sojourn time is a

state average over all SMP reference states.

(2) Conversely, assume that the equivalent reduction from an SMP to ARP is possible.

Then an arbitrary request "in the ARP” will experience a queueing delay given by

~

Wom . Hence an arbstrary request in the full SMP will experience ‘;'p,,, delay. All
requests experience P;’m delay independent of the state from which they were emit-

ted in the full SMP. Therefore the delay v;,,,, will be present in all of the SMP

reference states so W,, = W .

It is certainly true that W), is not always Wpi,,, it is reasonable to expect the
approximation to hold in circumstances where GRM contention (interference) is not too
great and PE’'s behave nearly independently. When PE’s are independent, randomness

in state occupation at time ¢ is expected between processes due to queueing effects.

That is, queueing effects serve to statistically separate GRM references from each other.

54

This tends to make 147,5,, into L?’,,,, in the sense that correlation between GRM reference
characteristics is not great (for a particular PE, there is certainly correlation in the
request arrival streams at GRM's) unless, for example, two references to the same GRM
by the same PE are arranged closely in time, this makes waiting time dependent on the
state of emission. The effects of this approximation have not been found to be appreci-
able in that loop and execution times are typically composed of many queueing times,
small differences have been found to be negligible. Simulations have shown (see chapter
8) that the approximation W, = WZ_ is reasonable in many circumstances. In fact,
there has been no motivation to include more resolution by computing Wm‘ rather than

Wy -

The effects of the approximation are all that is required. In that performance
measures are the primary results of the model analysis, only as much resolution in com-
puting waiting times as will yield acceptable performance measure predictions is
required. Our primary interest is in the effects attributable to state independent waiting

time moments.

Approaches for computing W,, have been developed for the ARP description of PE
behavior [BaS78, Smi74|, unfortunately they have assumed that -W-,,,, is independent of
p, 1.e. that all PE requests for GRM m experience the same queueing time statistics. It is
too gross an approximation to be used realistically. While Wi = WE may be con-
sidered to be approximate, W:z WY is quite simply incorrect except in homogeneous
cases. Previous approaches have done an accurate job of predicting 5, but most have
not computed W, from p, (it may be seen that W, — it exists in the homogeneous pro-
cess case -- may be approximated from p, and ARP properties). Even if ¥, is avail-

able no technique has been found that will invert W, to get Wm. Further work here

may be warranted. The following discussion illustrates appropriate computations of

w T.2

PR

Many analytic formulations are possible; the following have been used with a rea-
sonable amount of success. Two techniques will be presented here to show the range of
possibilities in this phase of the analysis. Both rely on the first two moments of compu-

tation state sojourn times and the first three moments of connection times.

55

It should be noted that the SMP model solution emphasizes the physical analysis of
the ICN and GRM system. That is, it is most appropriate to perform a physical
analysis of the resource system to obtain components of equation (3.6). Compare this to
exponential or Markov chain based models of, for example, the same type of system
where system "model state diagrams” may be used. For example, if the equivalent com-
putatioﬁ state and connection times are exponential, then a simple system Markov pro-
cess may be defined [MaG81]. Using these techniques state space size is a significant
problem. This logical analysis suffices in relatively simplified system configurations, but

fails to be tractable in reasonably general, realistic systems.

Physical analysis of resource systems combined with the PE state diagram descrip-
tion allows the SMP model to be used in a tractable manner; assuming that the state
space itself is small enough to be reduced to an "equivalent” ARP approximate represen-
tation used to perform the physical analysis. (Note that exponential PE descriptions are
a special case of the SMP model.) The drawback of physical analysis is that the resource
system may be reasonably complex and extensive knowledge about system behavior and
appropriate modeling is required. Physical analysis is not quite as simple as solving a
Markov chain problem. There is a tradeofl between analysis simplicity and tractability.
Once physical analysis has been done, the use of its results is very economical when com-
pared to logical analysis or complete simulation. Occasionally physical analysis may be
formulated into a logical analysis problem (such as in analyzing an M/G/1 queue in iso-
lation to obtain physical relationships), sometimes unacceptable simplifying assumptions

must be made in the analysis formulation.

Because of its economical results, the physical analysis approach has been used here
with much success. F"hysical analysis also gives explicit resuits or approximations which
may not in general be possible when using logical analysis. Physical analysis also lends
itself well to the substitution of simulated values required during the analysis. The phy-
sical analysis will be guided by previous results, intuition, and simulation data. The phi-
losophy of using physical analysis with heuristic approximations used for previously
unquantified effects is described in part in [Whi83]. Since we are dealing with analysis
that has not yet been rigorously dealt with, heuristic approximation development sup-

ported by simulation validation is believed to be an appropriate approach.

58

4.2. PE Synchronization

During simulation studies it was noted that in some realistic circumstances PE’s
may self synchronize their request emission streams to obtain negligible or actually zero
queueing times.

PE synchronization occurs in configurations where there is enough time between
successive references by PE p such that — with high probability -~ there is enough time
for several other PE's (j 5% p) to use GRM m. (Note that this would most ;;robably be
seen in configurations with highly discrete computation and connection times.) See figure

4.2 for a diagrammatic representation.

Note that exponential models of system behavior do not model synchronization
(technically, for models which assume sojourn or connection time CDF’s that have a
density on an interval, stochastic system paths that exhibit synchronism occur with zero
probability, although these stochastic paths are certainly in the sample space), they
ignore the stochastic paths which display synchronization in an effort at achieve simpli-

city. These paths may easily occur though. An example is shown in chapter 8.

3
PE 1 procseds
|

PE L1 oeter

Conp. »
PE 2

Rafer. %

/7 I
Collision PE 2 proceeds
]
activity

Figure 4.2 PE synchronization timing.

57

4.3. An Independent SMP Formulation for'Waiting Times

First consider an approach based on the SMP independence approximation with
emission time characteristics included. To calculate W,, (t), condition on the sequence of

requests found in the GRM m queue, including the service position, at the time of a PE
p request arrival. Define 3;,,, to be the sequence of (processor, state) pairs seen in GRM
m by an arriving request from PE p referencing GRM m. An instance of 3,,,,, might look
like S,,,,. =6= ((py,31), (P232), " (p¢,8)) where (p, 5) is a tuple representing the PE
number queued in position i and the state s, ¢ A; in which PE p, is waiting. p, is the
PE using GRM m at the arrival time and p; is the PE whose request arrived just prior

to PE p's. Consider the FCFS queueing discipline from here on. Conditioning and

unconditioning on 4,, gives:

~

Won (t) = ¥ Won (13pm = 6)P{A,n =

H

Oy

) (4.1)

Again, because of the existence assumption (approximation) concerning W, (t) we will

~

assume that Pr(A,, = §) exists for an arbitrary request arrival from PE p in the

steady-state. (The time varying nature of the request emissions in actual system opera-

tion makes this an approximation.) Moments of W,, may be found from

PR—) v N -
W = f t* iW,n (= z W;mfﬁm =i Prd,n =¢) (4.2)
0 5 .
where W* o _, is the £ moment of the waiting time given the sequence § was seen

min, .,
at the arrival point. This quantity is computed as
T g« 9 o £
me[:;’m == § =E[(QY’;‘,”“ +EP151”")] (4.3)
l -

where E, ; » is a random variable representing the excess or residual connection time

for the connection in progress at the arrival instant. Note that all random variables

o~

Yp} 5 m and L’E,mm are independent by the assumed independence of PE's. E; ; . (¢)isin
general difficult to obtain rigorously because: the GRM m service process is not renewal
with CDF Y, ; (1); and the PE p arrival time is not Poisson (arriving requests do not
see random arrival time statistics). There are, though, some approximate guidelines that

may be used in formulating E, , .

58

4.3.1. The Excess Connection Time

If service processes form renewal processes with service time Yyem (i.e., that PE

p, uses GRM m repeatedly) and PE p requests arrive at random (Poisson) times then
=
Yprs ™

2y

715ym

from residual life theory [HeS82, Ros70]. Conversely, it has been

o~
Pysym

noted that in circumstances where PE's self synchronize Eh’x“ =0 is possible even

when ‘17?1:1,,, > 0, ?1,131,,, > 0. Delay until section 4.3.3 further discussion of E’mm'

Consider next the computation of Pr(&,,‘ = §).

4.3.2. Computation of Pr(a,, = §)

~

In general Pr(A,, = &) depends on all stochastic processes in the system in that it
is influenced by the state of PE’s j 4 p at the emission time. The emission time charac-
teristics are important but are inherently too complicated to handle rigorously, therefore
approximations will be made. PE's j % p are, in turn, are influenced by their previous
GRM references which include effects from PE p itself. Hence PE p affects its own
arrival point statistics. Due to the complexity of including feedback effects and the com-
putational cost of evaluating (4.1) and (4.3) over all sequences 5, the approach indicated
by (4.2), although valid, will not be pursued here. See [MaM82| for an example of the
summations involved. An approximate approach will be used that takes PE's to be
independent and the emission time to be a random time for the purpcses of computing
arrival point queue lengths, a heuristic correction factor will then be applied to reflect
PE p’s influence on its own arrival point queue lengths. Consider the first moment of

waiting times, the central approximation is:

me = "_.pm i:m (p)(l + ppm) + (l‘a;m)Epm (4'4.)

Where

E,, is the mean excess connection time similar to above averaged over all PE’s j #
and their reference states (we are using the approximation that arrival point statistics
are independent of the emission state), that is, it represents the excess connection time

for an arbitrary request arriving at GRM m from PE p,

ZJ

59

X. (p) is the mean connection time averaged over PE's j 5% p,

a,n i3 the probability that GRM m is free at the PE p request arrival time, and

N, is the mean GRM m queue length seen by an arriving request from PE p, as com-

puted without including history effects due to PE p.

The quantity 1 + g, is used to approximate the effects of PE p on itself attribut-

able to its previous use of GRM m. Hence N,,,, (1 + p,m) represents an approximate first

moment of the queue length seen by an arriving request from PE p. Since 1 + p,, is a

heuristic correction factor it is an approximation that requires testing. p,, is computed

as

Pom =)‘pm Ypm = Z)\psm Ypsm (45.)

r
scA,

o

o

from the ARP or SMP values. X, (p)is computed as

— 1 — 1 Pm (p)
Xa(p) = Sha¥m = —— Yom = 1.6
0 =5 T Em = S B T) (46)
And
—_— 1 e
Xalp) = Y Na Y
(o) Malp) 2,77
g where p,, (p) is p, without PE p's contribution: p, (p) = 0 = #ym -
a,, i3 approximated with general time quantities:
@, == Pr(no PE j 5 p is using GRM m al the emission time t)
=~ [[PAPE j is not using GRM m at {)
7
PrPE j is not using GRM m at {)
= 1 - PH{PE j i3 using GRM m at)
Mm (Wim + Vi)
] — - =7
CJ
So
n’m Wsm + ?;
oy = [T | 1 - 2o * ¥on) (4.7)
IFp G
where 5]' is the mean cycle time for PE j's equivalent ARP. Formally, we are using the

80

approximation that either ¢ is a random time or ¢ is such that PE p emits a request at a
lattice point of all other PE ARP cycle times. C,” is given by:

O =5 +X (W + Vnlnm (4.80)
m

Finally consider N,,; again the approach is to take the emission time to be a time-

limiting general time. To reduce the complexity of computing PrA,, = 6) (even

without PE p's own influence) an averaging reduction technique will be employed.

Define W, (p) to be the mean of the first moment of waiting times, averaged over all

PE's but p,

= A — 1 —
W, (p)= {—-——— } Wpw = e v)\;m u’] (4.9)
LISy | = 5o Tom

We are building a unified mean waiting time to be used in writing simple expressions.

The quantity W, (p) is not a performance measure in itself but is an internal variable
used in the evaluation of Wp,,. Define g,» to be the probability that a request {rom
another PE is in GRM m at an emission time for PE p referencing GRM m. That is, it

is an average over all PE’s j 5% p:

Nom Wo +Y0),
RS [LEL
I#P)\m(p) C‘;

If these averaged quantities W, (p), and qym are valid (they are most accurate in

the homogeneous PE case), then the arriving request sees a binomial distribution of

requests in GRM m. This approach gives an approximate closed form evaluation for

Pr|apm| = &)

X, (») } { W—i(p)] B (4.11)
Wo(p)+Xp) | L

A set of counted requestors is introduced as Qom

Qom ={J’#p:p,«m >

and #., is a set of feasible requestors:

(4.126)

|
|

61

#om ={i #p:X\m >0} (4.130)
#,» consists of requestors that are feasibly seen by an arriving request from PE p

referencing GRM m. The set Q,, is a set of requestors that are to be counted as in the
separated queueing system composed of PE's j % p and GRM m. This "countability’
indicates the fact that some PE's may influence GRM m more than other PE’s, hence
counting all requestors equally in Q,. would lead to inaccurate results. The above
thresholding scheme is based on an "average threshold” value. Note that in a symmetric
case where all PE's behave identically |#,,| =P -1 and p.(p)=p,m(P-1) s0
|Qm| =P -1 as would be expected. This thresholding scheme has been found to work
reasonably well, see the asymmetric example in chapter 8. Other thresholding schemes
having lower thresholds (and hence higher |Q,,|) have been found to overestimate Wom
in asymmetric cases, hence thresholding is important within the approximations

developed here.

The quantity §! is the number of ways that & requests from Q,, may be

]
placed in the GRM m queue and service positions.

(1~ ¢pm)]Q""g % is the probability that |Q, | - § requests are not in GRM m at the
arrival time.

b1

q,f..[_ X () H _ W, (p) (4.14)
Wa (

Wa (2) + X (p) p)+ X (p)]
is the probability that § request are in GRM m at the arrival time. §- 1 requests are in
Wa (p)]]

[Qom — ‘__
Wa(p) + Xal(p)
(each reference for GRM m is composed of two phases — waiting and service, the phases

queue with probability

§-1

(4.15)

are occupied with fractions P:i};,, (p)/(}ﬁ (p)+ X (p)) and X, (p)/(W, (p)+Xn (p)) respectively

given that the PE’s have requests in GRM m); and one is in service with probability

om X (p)/(Wa (p) + X.(p)). Since only one request may be in service, the other § - 1 are

excluded from this phase of their reference state sojourn. Then

82
_ 1, 1 ~
Now = Y (6= 1PA|A,n | = 6) (4.160)
§]

4.3.3. Characteristics of the Mean Excess Connection Time

A simple heuristic function has been used to approximate E,, by assuming the
results of a renewal service process being examined at a random time, corrected with a
multiplying factor for the application. The form used is:

o
= _ Kalp)
2K, (p)

X7(p)/(2X, (p)) is the approximate excess connection time when s, (p) = 1. fom 18 used to

fpm (.)

correct this value when p,(p) < 1. (Note that f,, might be more properly depicted as

/,sm but we ignore emission state dependence to reduce complexity.)

Although introducing a multiplication factor is approximate, it is an attempt to
include effects that are computationally expensive to handle in a more rigorous manner.
Since it is believed that models should provide economical, approximate predictions, sim-
ple approximations have been developed. The evaluation is guided by quantitative and
qualitative aspects of queueing theory.

The general shape of f,, used is shown in figure 4.3. The ratio of X,, to A/, is a

measure of the frequency with which PE p uses GRM m relative to all requestors.

Another possibility is the use of X\,, /A\n (p) as an indicator of PE p use relative to other

requestor usage. When this indicator is near zero, PE p rarely uses GRM m -- the mean
time between uses is large - and hence PE p’'s interarrival time CDF "approaches” an

exponential interarrival time statistic so we set f,, = 1.

As the usage frequency (call it u,,) increase from zero (it is bounded by one when
it s taken to be \,, /\p), f,m may decrease because of synchronization effects. The
amount of decrease is related to the coefficient of variation of request interarrival times
at GRM m. As u,, increases coupling between request streams increases. Hence deter-
minism and correlation between inter-reference times in the input stream increases with
tym. At the boundary (i.e., when the stream becomes fully deterministic). When

Vii, = 0 a PE p request in the arrival stream sees a constant residual connection time,

otherwise V\7 > 0. In the 2X2 case this occurs when requests alternate due to previous

83

Figure 4.3 Linear interpolation for f,, .

collisions: the residual connection time is zero. Hence when u,, =1 and V}; =0, no

residual will be seen so the form for f,, (using a linear interpolation between endpoints)

used is:
(VM) - Dtpm + 1 tpm S L VF(p) <1
fm =1 Vi*(p) tm > 1, ViZ(p) S 1 (4.17)
1 Vit(e) > 1
or
(Vz\}z"l)“pm + 1 Uym S 1, V\}2sl
fom = VA}f Upm > 1, V,}f <1 (4.18e)
1 Vit > 1

Depending on whether the PE p request stream is included in the measurement of the
amount of determinism in the GRM m request stream. Coefficients of variation to the
first or second power might be used. Experimental data has shown which choices are

most appropriate. In practice, only two of the possible eight cases have been found to

04

?k@ one that generates the smallest /., ; and the one that generates the largest.

¢a3%es two cases 1 and 2 respectively.

A ym
Upm o) (4.19e)

Aom - Aom
o 7 Am Am(P) + Apm
5 depending on which is chosen to represent the usage frequency.

(4.200)

Upm

4 A €3/G/1 Approsach to Walting Time Calculations

As ga slternative to "probabilistic” analyses for evaluating W,,,, , consider the use of
3‘ fiﬁi%# ¢nstomer queueing network model of the system. Finite customer network
33&%}‘% has typically been limited to exponential service times or approximations based
on Jackson type networks. An analysis of queueing networks based on the first two
moments of service times was described in [Kue79], unfortunately [Kue79] yields inaccu-
rate results for small customer populations as seen in the networks considered here (i.e.,
s small sumber of PE’s, say less than 32). The basic approach from [Kue79] has been
snhanerd with heuristic approximations for the system considered here. The approach
migﬁi be generally useful in small population queueing networks but has not been tested
generally.

The G/G/1 approximation for computing W, is based on viewing the GRM m
queus from the viewpoint of PE p. It is based in part on the idea that in a Jackson type

of finite customer queueing network arrival point queue statistics are those obtained as

the steady state solution for a system without the arriving customer (i.e., a population
deereased by one, see [SeM81|). Here a similar but not equivalent approach is taken
which separates PE p requests from a subsystem composed of PE’s j 3% p and GRM m.
That is, a PE p request sees a subsystem composed of all other PE’s and GRM m. GRM

m then behaves approximately as a G/G/1 queue with a renewal input process formed

by PE's j # p and service times)E,.(p). This is asymptotically most accurate as the
mean time between GRM m references by PE p tends to infinity (i.e., PE p contributes a

negligible amount of load to GRM m). The GRM m input process interarrival time

1

85

moment calculations are based on [Kue79] (with corrections for case 1 detailed in the
appendix) and a G/G/l mean waiting time approximation from [KrL78] as stated in
[Kue79]. Again the mean waiting time must be modified to account for the finite
number of requests that may be in GRM m at an arrival point (at most #,,), and PE
p's contribution to its own mean waiting time. Note that the independent SMP calcula~
tion above was inherently a finite customer approach whereas an uncorrected G/G/1

approach is inherently an infinite customer model. The G/G/1 calculations follow:

For a G/G/1 queue with mean arrival rate a, coefficient of variation of the interar-
rival time 3, mean service time %, and the coefficient of variation of service time §, the

mean waiting time is approximately [KrL78]:

W= ___.2:7_._.). (# + &) wa,7,5,5) (4.21)
Where
2l-ay) (-
P { 3ay F+ & } a<1

exp{—(l-av)—ﬁg—zﬁ?} 921

!da,‘{,ﬂ,ﬁ) =

To account for the finite number of requests in the system, consider using the product
Wg,»n where g,, represents an approximate function used to limit W and is a function of
system size and utilizations. Asymptotic values for g, are:

}gm l ’EQ,,'I—‘): 01 [Q”I:ECO gpm = 11 gpm l as pm (p) Tv gpﬂl T a2 pm(p) 11 O S Q;m é.zlé‘)

When there are no other requestors in the system, g,, = 0. As the number of other
requestors grows, g, increases to ome. As p.(p) increases, GRM utilization by other
requestors increases, hence the potential for synchronization increases from increased
coupling, therefore g,, decreases; a small g, creates a small waiting time. Due to the
general nature of the asymptotic limits, there are an infinite number of choices for g, .

One which has been found to work reasonably well is:

Iom = (1 _ C—JQ,,,.!);’,,.(») (423.)
This is an approximation that has been found to work sufficiently well with the fol-

lowing modifications that account for dependence on p,n :

88

—

W,n == min { Xp (p)*|Qpm |,
X,

(P)*E (9, m)*E o(p,m)* 3y *hym } (4.240)

Where

Vi, (p) + V& (p)
2(1 = Pm (p))

Exp,m) = w(\n (p), Xn (p), Vi (p), Vs, (p))

E\(p,m) =

Vir_(p) i3 the coefficient of variation of the time between request arrivals at GRM m
without PE p's contribution. Vs (p) is the coefficient of variation of the service time
(connection time) for GRM m without PE p's contribution. 4,, is a history dependence
factor. [f GRM m were an infinite customer subsystem or many PE’s or requests in the
system, then A, = p,(p) would be used (contributions due to PE p may be insignifi-
cant), to include the most straightforward dependence on p,, the following expression

for A,, has been used:

hom = om (P) + Pym = pm (4.250)

The inclusion of p,, represents an approximation for history effects. This is analo-
gous to the (1 + p,,) multiplier in (4.4). Notice that again the first two moments of
computation and reference state sojourn times appear, although here they arise in the
queueing equations inherently. In the independent SMP approach they arose when the

excess connection time was considered.

4.5. Second Moment Calculations

The second moments of waiting times are required in computing Vi, above.
Second moment waiting time calculations are less critical than first moment (assuming
the first moments of measures are of primary interest) and as such a simple M/G/1
approach will be used. It is motivated by superposition limiting theorems as approxima-
tions [Cin72]. Consider using the Takacs M/G/1 waiting time equation with the finite
customer factor g,, :

An (p)X(p)
31 -pnlp)) o

e s s

Wea = |2W,n)* + (4.260)

See [MaM82] for a similar first moment approximation that was based on the fact that

67

the superposition of sparse renewal processes leads to a Poisson process [Cin72]. It is
most appropriate for large systems where the input process at GRM queues tends to be a
Poisson process. In fact it has been noted that even small systems have a strong Poss-
son tendency under many circumstances if the coefficient of variation is used to meas-
ure the approximate "distance” to a Poisson process. An improvement in (4.28) may be
achieved by taking into account the finiteness of the system and coupling effects as in

the first moment computations.

4.8, Coefficients of Variation

The existence of the coefficient of variation requires that processes be renewal.
This may not be true in an actual system but will be assumed to be true in order to
derive approximate values, this approximation is often used in queueing network analysis

[KueT9, MuM82b, MuM82¢].

To obtain the coefficients of variation required throughout the calculations, the
relationships given here have been used:
Xp) - (Xa ()
(Xa (p))?

Vi, ()= @ V1 (4.280)

Ve (p) = (4.279)

® denotes the superposition operator on V,% defined by formulations in [Kue79]. V.3 is
the coefficient of variation squared for the time between GRM m references by PE p.

V,% is related to fo as follows [Kue79]:

Von =1 = nm(1- V&) (4.290)

Where fo is computed using cycle time moments in the equivalent ARP:

=t =1\
. CTZ -(C
Vp" == -—p——-:.-r(-—zi—)—' (430‘)
’ (G5)
5; is given by (4.8) and 5;# is given by:
_—-”‘ ~l ~ ~l ,
G = ZE{(SPI + W + Ypm)z] Mom (4.319)
"

Since for a particular PE ARP cycle these random variables are independent:

68

e 4 Tr—— -—7-‘, ’
)y = STp’lz + wasm”m + Zyvm Mom
m

= S — =, (4.320)
+ 25, S Wonttgm + 25. 8 Vomflem + 2 Won Vomlym
m m -

Vi = Vi (p) ® V2. (4.33)

Note that the second moment of queueing times is very approximate, this leads to
overestimation of the second moment of cycle times. The Bernoulli loop approximation
will also over estimate the second moment of transition times, these two facts combine
to over estimate Ve . This is a rough interpretation, so that in fact it may not always
hold depending on the solution point reached in solving the equations. That is, because
of the complexity of the equations it should be expected that rough statements are occa-

sionally violated due to asymmetry, side effects of one variable on another, etc.

4.7. A Solution Procedure

Since interest was directed toward model development and analysis and not toward
an elegant solution technique, a simple fixed point iteration scheme has been used to

solve the model equations. The fixed point scheme used is:

(1) Initialize waiting time moments to zero. This is actually not that important, the

solution values obtained are independent of reasonable initial values.
(2) Solvex, =x,P, forallp,1 <p < P.
(3) Reduce all given SMP’s to equivalent ARP’s by using (3.34, 3.35, and 3.38).
(4) For all PE’s, compute the mean inter-reference times 5,' from (4.8).

(5) For all PE's, compute the coefficient of variation of the request streams, given by

(4.32, 4.30, 4.29, and 4.28).
(8) For all PE's and GRM'’s, compute X,, from (3.37).
(7) For all PE’s and GRM’s, compute A, (p) = 3, <, N\ -

(8) For all PE’'s and GRM’s, compute X.I*p) and pn. (p) from (4.6). Compute the first
two moments of waiting times from: (4.4, 4.5, 4.7, 4.17 or 4.18, 4.19 or 4.20, 4.9,
4.10, 4.13, 4.12, 4.11, 4.18, 4.28) for the SMP analysis technique; or (4.13, 4.12, 4.27,
4.23, 4.24, 4.25, 4.26) in the case of the G/G/1 analysis. This waiting time calcula-

tion must be done in a single phase, that is, a Jacobian update of the waiting time

I

[

1]

matrices W and W2 is used. The Gauss-Seidel update technique may cause the
solution to fail.
(9) Go back to step 4 until convergence is met.

(10) For all GRM’s, compute arrival stream coefficients of variation V,{ from (4.33).

(11) Compute sojourn times from (3.6).

(12) Compute p,, from (3.10).

(13) Compute X from (3.22).

(14) Compute X~ from (3.25).

(15) Compute p,, from (3.28) (and potentials).
(18) Compute ¢, from (3.15) (and potentials).

(17) Compute C,,, from (3.12).

In general, the solution procedure may be run several times to obtain bounds

described in chapter 5.

The iteration loop is that typically seen in fixed point vector iteration schemes, con-
vergence is defined to occur when there is little difference in pertinent variables from the
n™ iteration to the n+1%. If convergence is not found within a given maximum count,
then the solution has failed. It has been noted that in cases where convergence in either
the SMP queueing analysis or the G/G/1 analysis occurs, it typically takes fewer than 15
iterations. The G/G/1 solution does not always converge, this will be demonstrated in

chapter 8.

4.8. Simulation Analysis of Walting Times

As an alternative to the analytic prediction of waiting time moments, consider a
combination of model analysis and simulation solution. In particular, it is feasible to use
the SMP to ARP reduction technique to form a set of simulation parameters. A simula-
tion may be invoked at the ARP level of system operation to obtain predictions of wait-
ing times. These predictions may then be used in the model equations to complete the
original program state cycle time moment analysis. The simulation approach is particu-

larly attractive when more accurate results are required than analytic approaches may

70

provide. The reduction to an ARP forms an intermediate level where simulation is not

prohibitively expensive and the results may be quite accurate.

During simulation, the CDF’'s S,; (f), Y, (!) will be required for random variable
sampling. Hence representative CDF's need to be derived. An appropriate approach is
to note from the above two wasting time analyses the number of moments that seem to
be required in representative CDF’s if the simulation analysis for waiting times is to be
at least as accurate as the analytic approximations. From the analysis it may be seen
that the first two moments of the equivalent computation state sojourn time (SZF')
must be matched to the first two moments of the representative CDF. Similarly, the
first three moments of equivalent ARP connection times (1_’?,1'3‘) must match the first
three moments of the representative connection time CDF chosen. ([Fre82] suggest
moment matching to approximate GI/G/1 waiting times.) Example calculations follow

that may clarify the point.

Since only the first two moments of the computation state sojourn time arise in the
queueing analysis, two moment matching may be used with a CDF function chosen to
represent the computation state sojourn time CDF. [Kue79] contains a representation
for CDF’'s which match the first two given moments. The first two moments of each
PE’s equivalent computation state sojourn time would be obtained from the SMP to

ARP reduction process previously described.

A three moment representation CDF for Y,, (¢) will be described as an example of
the possibilities. Recall that 17;,?3‘ are derived from the SMP to ARP reduction pro-
cess. The equivalent delay time CDF that will be described is shown in figure 4.4. Oth-
ers might be chosen, generally these should be chosen to closely replicate the natural
behavior of the system operation under consideration.

0 t< A
Yom (1) ={ 1 pe 3 4 (1-p)ettD)) ¢ > A
k is chosen by the model user and should reflect the amount of determinism

expected in connection times. A, ¢ and p are found from matching the first three

moments as follows:

|
|
,ﬁl
|

71

Constant
Delay

Figure 4.4 Three moment representative timing.

Yom = [tdY,m (1)
V]

1- Lo =
=A+% +—k}?_ {=o00,p=1 *pr;:"—:(me)z» ?;13:=(am)s
o) A3
TE=par+ 28 L2 (k0
é 3
2 ; A4
m‘zwusm .,.?_?’?é_ +%”. -(1-,,)35;9__

Which establishes A,¢, and p in terms of Yp,,.[' =2 and k.

The simulation approach for determining waiting times is still subject to the higher
moment approximation present in the SMP to ARP reduction process and the Bernouili
loop approximation. Although the simulation technique has not been developed further
it is believed that it would yield results at least as accurate as the analytic approxima-

tions described.

72

4.9. Conclusions

This chapter contains an appropriate physical analysis for a crossbar based system
which operates according to the specifications given in chapter 1. The results presented
also have applications in small population, reasonably general queueihg network analysis.
The idea of physical analysis allows different ICN behaviors to be modeled by doing the
appropriate physical analysis for ICN queueing times without changing the basic model

framework.

CHAPTER 5

GENERAL RELATIONSHIPS AND BOUNDS

This chapter describes relationships and bounds that provide further informa-

tion about system operation and insight into system characteristics.

Bounds on performance measures that depend on first moments of connection and
computation times will be described. Bounds dependent on first moments are important
when highly accurate behavior prediction is not required, or when an in depth analysis of
connection and computation times is not feasible. The bounds have been found to work

reasonably well in practice.

The mean outside observer queue length, N, , is also discussed. Interesting rela-
tionships concerning waiting times are derived, they indicate that for some system confi-
gurations, resource queueing must¢ exist (i.e. there may not exist a perfect synchroniza-
tion scheme). Simple sensitivity analysis is described which demonstrates insensitivity of
GRM utilizations to changes in waiting times. A formulation of derivative equations

relating system quantities is also discussed.

5.1. Bounds

Consider using first moment information in bounding first moment measures
and utilizations. State sojourn times will be bounded by bounding waiting times. The
resultant bounds on sojourn times may then be used to bound performance measures.

Three bounding schemes are readily apparent:

(1) First consider lower bounding sojourn times. An obvious lower bound on sojourn
times (with the first moments for sojourn and connection time parameters assumed

available) is obtained by setting all waiting times to zero, assuming all computation

73

74

and connection times to be deterministic and then computing the measure values
desired. This procedure yields hard bounds in that the bounds obtained (upper
bounds on p,, lower bounds on mean cycle times, upper bounds on ¢,, and lower

bounds on Ve, and V,,) may not be crossed regardless of further information con-
cerning higher moments, except that Vp’ and V,, may cross the hard bounds due

to the point process approximations and the Bernoulli loop ramifications. The term
hard bounds will be used to describe the solution values that result (recognize these

as the potential values).

An upper bound on program execution time may be obtained by assuming all com-
putation state sojourn times and all connection times to be exponentially distri-
buted with mean equal to the given first moments. This is believed to give an

approximate upper bound on execution times, waiting times, V, and V, while it
PP PP g P, M,

gives lower bounds on PE and GRM utilizations. These bounds are approximate in
that computing the bounds requires the use of the model calculations which are
approzimate. Assuming exponential CDF’'s leads to overestimation of queueing
times (they generally increase with the randomness of the arrival stream) and hence
an overestimation of reference state sojourn times. This bounding relies on the
assumption that program/processor timing is less randomly distributed than an
exponential, this may not be the case in a general requestor/resource application so
these bounds may be inappropriate in a more general environment. In practice the
exponential based bounds have in fact held. These are not hard bounds in that
they may not always hold due to the approximations involved. Term these bounds

the ezponential based bounds.

Another bound along the same lines may be developed. This bound is a soft lower
bound on sojourn and waiting times, state transition times, coefficients of variation,
and a soft upper bound on PE and GRM utilizations. In a similar manner to the
exponential based bounds, assume all sojourn and connection times to be deter-
ministic with values based on their means. Assuming deterministic timing induces
discrete request stream interarrival timing and consequently underestimates waiting
times. Hence reference state sojourn times will be lower bounded, utilizations will

be upper bounded. Notice that system configurations with constant sojourn and

75

connection times will meet this set of bounds. These are termed determinsstic

based bounds.

In computing the bounds shown in chapter 8 the same solution technique is used as
in chapter 4 with Q,, held at the value assumed during the model solution obtained when
using all the moments. In practice this is not be possible if only first moments are avail-
able, @,» would more realistically take on the value computed during the bound solu-
tion. Computing bounds increases total system analysis complexity, but the results of
the analysis are more useful. The bounds form an approximate prediction interval in
which the system behavior will be contained. In practice the bounds have not been

trivial, i.e., the interval is not too large to be useful.

5.2. General Relationships

Consider attempting to set all waiting times to zero. An interesting issue regarding
resource contention arises: some programs can not execute without some form of

queueing of requests, contention must exist. Consider the fact that Pm S 1 Y m.
Then

)‘v:l‘?m =pn <1 Vm
From (3.38)

— 1 ——y
"Ym = —'—.— Z)\m Ypm
Am 5

Then

Ekpm ?pm = pn <1 Vm (51.)
Since ¥, is given and does not depend on),,, this bounds Aom ; hence programs may
not execute without some form of queueing effects that reduce A,m 80 that (5.1) is satis-

fied. Since there are M inequalities and Px M unknowns (\;m) there exist multiple solu-

tions to these bounds.
The existence of multiple solutions to the relation
Y. ?,:,, =] X/ m
?
implies that a simple bound for Aom (i€, \;m < A,%) may not be determined from (5.1).

This results from the reduction in dimension seen in the relationships. P X A unk-

nowns (\,,) are mapped into an M-vector (p,). Simple bounds do exist if Mom =1,

78

N,m =0, j 7% p (disjoint reference patterns).

The multitude of in solutions to (5.1) coincides with the existence of many queueing
disciplines that will cause (5.1) to be satisfied. For example, various queue service discip-
lines may be derived that allow preferential treatment for certain PE's and discriminated
treatment for others. Preferred PE's may access resources rapidly while others are

slowed down in an effort to keep the utilization bound satisfied.

These bounds on)\,, limit system operation; since the hard bounds described
above may violate these utilization bounds, they may be spurious.

A relationship among PE and GRM utilizations exists and is invariant under queue-
ing discipline changes: let P(f) be the number of requests in the entire system at time ¢ (a

request may be "in” a PE if the PE is in a computation state), then
q

Pt =Tlgu+ LNa() + TBa ()

=3Ylcn+ LNa(8)+ B()
? m
Where C,(t) is the event that PE p is in a computation state at time ¢, i.e.,
C, (1) = {E,(t) ¢ Qc, }. The single request per PE case is equivalent to a constant

number of requests in the system, P(t) = P, ¢t > 0. If all processes in the system are

ergodic then limits and expectations may be assessed to get

P=Y¢,+5N, +8

? m

Potentials may be evaluated also (N, = 0 for potentials):
P =394, + Ez’m
7 »
Then an interesting expression for the sum of mean queue lengths may be written:

YV = X -4) + Tlom - on) (5.2)
- ? m

For a symmetric situation (P = M, all programs are identical and reference patterns are

uniform) this becomes:

PNM =P($p"¢p)+P(;m “Pm)
‘Vm zgp..(ﬁ’ +;m"pm

Consider the calculation of W, (an arbitrary request mean waiting time similar to

We (p) but with PE p included) with Little’s formula applied to an arbitrary arriving

77

request (i.e., without regard to type), then:

No = AL W =24 'il; gp; Aym Wom | = }_; Apm Wom (5.30)
Which relates mean outside observer time limiting (or Poisson examination time) queue
lengths to the arrival point waiting times. X,, Wm is the mean queue length for GRM
m attributable to PE p. The relationship maps a matrix of PXx M waiting time values
into a vector of M queue length values. This reduction in dimension makes the inversion
of W, into W,, indeterminable. It seems that an expression for W,, must be derived

for the asymmetric case.

Using (5.2):

ZZ)‘M me = Z(¢: -6,) + Z(Pm -Pm)
m)4 m

This relates waiting times and rates to system utilizations. For the symmetric case

above

MP), W, = MN,

Pxpmwm == > '.¢p +p'n ~Pm
but W,, = W, for the symmetric case so

A ~

Phpn Wa =0, =6, + pn - Pm

5.3. On the Sensitivity of Utilizations

It has been found that utilizations are typically robust performance measures.
That is, they may be predicted with sufficient accuracy even when using gross simplify-
ing assumptions. The reason for GRM utilization insensitivity as often employed in
early models [Bha73, Hoo77, MuM82a, Rau79, SeD79, Str70] may be seen from (con-

sider for simplicity in notation, the symmetric case, i.e., where p, =, W,, = W

m ’

Vo =Y, 55 =S, mpm = 1/M, A% =)', ¢, = ¢):

p=XY
A== P
MS+ Y+ W)
MS+ Y+ W) S+ Y+ W

Define the following sensitivities:

78

xuy = GRM utilization sensitivity to changes in W

Xxp = PE utilization sensitivity to changes in W

Then
- | S = PY
XM W sohution W ‘M(S + Y+ W)2 soktion W
] e _ s
Xp W 1oktion W A"[(S + Y + }V)z sobtion W

These functions are plotted for some representative cases in figure 5.1. It has been
assumed that S and Y are constant with respect to W since we are interested in small
perturbations in W due to prediction error. These functions demonstrate that around
the solution point for W (which is approximate because the model solution kas some
error associated with it, simulation could have been used but evaluation would have
been more expensive) utilizations are not very sensitive for those cases considered previ-
ously [Hoo77, MuM82a| where the mean computation state sojourn time has often been
2 1. As expected, the greatest sensitivity will be seen when ¢, << 1, or 3’;; << V-
Even in cases where 5-',; < ?,',,, the sensitivity is relatively small. Hence the early
models are able to achieve accurate results for utilizations even when simplifying

assumptions are employed.

5.4. Derivatives

Interesting relationships among derivatives are shown below. Consider the fully

symmetric case.

s[1+-—‘9“’]

o _ L Or)

5y (S+ Y+ Wy

oW

W - §——

o TPV

35 (S+ Y+ Wy

iw

S+ W-Y—r0
PN 3

oY (S+ Y+ Wy

79

(oTisTuTmIzian) awp wmofes 8101s LOTIRAINdG . Onsiuwaan) sum umdfos aims vonendwed
ot] 9 v z 0

o1 9 9 v Z o
T T Y Y T . r 00°0
punog “dx3
> -4 o0
-1 80°0
- zro
punNog xaddn prey pUNOQ I8don pred
910 910
T = A “BUM 83UAIBISI OTISTUTLISIB(] 1 = A “8WN 80UaI3)31 NSIUTULSIBG
9= M= d SSTIATIISWOS 3d Z = H = d "SITIIMITSUES W
(onsuuumap) sum wnofos Mems vonmndwo)
(onistupaiap) awiy umolos aie1s voTIMINdND)
FA o1] 9 v z 0] 9 v b4 0
P —, T Y 0’0 ———— T 1 T 00
punoq “dxy punog “dx3
20 - 20
vo - %0

punoq 1addn preq
90 . -1 90

8’0 80

T = A ‘AW]3} BOURIAET STISFUTMIMA] T = A "ST) soBIajal OTISTUTMINAG
8 = M= d SIS e Z= W= d ‘SIATIISLS B

Figure 5.1 Sensitivity curves.

80 }

ow i
éﬂ *PY(I‘I":?-.-S—}

35 T TM(S+ Y+ W)

From which the following relationships become evident (solve for W /3S and set quanti-

ties equal):

2 M) 1
as PY | 38 S+ Y+ W
Then
A == _3_23_ - .&.{2 (éﬁ.}
as PY | 3§
Which ties together PE request emission rates and system utilization derivatives. The i

following relationship connects utilization derivatives (with respect to mean connection

times):
So _PS-Y+W) .’.'i[.‘?:é.]
oY MS+ Y+ wpE M5 (3 1
Next consider formulating differential equations to find mean waiting times.
Use the chain rule to find 9W/9S and dW/3Y in that S and Y form the given quan- i
tities in the simplified case described here. The equations would be solved for W(S, 7).
The approximation that W is only first moment dependent on S and Y will be used !

throughout. This is certainly not true in general, the applicability of the differential
equation approach depends on the amount of accuracy desired. This is an experimental
approach that has not been tested. It is believed that more work is required here in
testing the validity of, and solving these equations. It is believed that physical analysis
could be done to obtain approximations for the fundamental functions required by the

analysis:

W _ W 9
as dp 3§
Where dW/3p is to be obtained from physical analysis of the queueing station, it would

depend on results from queueing theory. Then:

81

3]
oW oo

39S -

MS+Y+ WP+ PY{% l
Similarly, writing an expression for W /aY:

W _ W 2
ay dp 0JY
The following is obtained:

ms+wﬂiz)
oW dp

ms+¥+w¥+Pd%?)

Notice that dW/3S and dW/3Y form partial differential equations in S and Y. No

further development of the differential equation approach has been pursued.

CHAPTER 6

SIMULATION EXPERIMENTS

This chapter describes experimental data obtained in an effort to verify and vali-
date the SMP model and the calculations shown in the proceeding chapters. In particu-
lar, two classes of simulation experiments have been performed: program execution
experiments intended to validate the SMP model assumptions; and synthetic experi-

ments intended to verify the calculations.

In the first class, two program execution simulations have been developed: a list
merge experiment (one phase of a merge sort program); and an elementary database pro-

cessing program.

The second class consists of experiments of a synthetic nature. These are con-
trolled experiments in which calculation error is examined. Specifically, waiting time cal-

culations have been tested with the synthetic experiments.

The SMP model has been found to be generally accurate. In the program execution
level experiments, execution times are typically predicted within about 5% of their simu-
lated value. GRM utilizations may display up to about 15% error (this error is seen in
the database experiment where the system is predominantly disk I/O bound, it is a diffi-
cult prediction problem because of the disk bottleneck, ¢, < 0.05 in these experiments).
Waiting time error may approach 30% when considering total GRM reference time
(waiting and connection time). The waiting time prediction problem is comparable to

the prediction of mean waiting times in finite customer, multi-class, queueing networks.

The first synthetic simulation example concerns asymmetric ARP simulation data.
The accuracy of the various approximations is examined in a highly unpredictable and

asymmetric situation.

82

83

The second synthetic simulation example concerns the approximation that

Wiem = W, . In particular, two much different reference states have been placed in PE

descriptions in an attempt to obtain a measurable -- using cycle time data — difference
in waiting times for the two states. The results of this experiment support the approxi-
mation that Wm is almost W,, when loop cycle times, utilizations, rates, and approxi-
mate coefficients of variation are used as performance indicators (i.e. when W, is Dot

required with a high degree of accuracy).

A comparison with a previous synchronous system model is presented. This is done
to see if the waiting time calculations break down in a discrete time, synchronous system

activity environment.

8.1. Program Executlon Experiments

In both of these examples, it will be assumed that instructions and local data are
stored in local memory so that GRM references are global data or resource references.
This form of system operation allows PE activity to be represented by program
flowcharts (once compiled into a PE state diagram) directly, program execution time is

of primary concern.

The simulators are in themselves operational SIMSCRIPT IL35 programs into which
timing specifications have been inserted. These timing specifications are believed to
represent object code execution timing and associated connection times. Although exact
timing emulation of an existent system has not been stressed, the values chosen are
believed to be accurate within the objectives of the experiment. High precision in emu-
lating specific system timing specifications is not required to obtain a valuable experi-

ment.

8.1.1. The Database Example

Consider a simple airline reservation system composed of terminals, PE's and a
memory system as shown in figure 8.1. The sub-system composed of PE’s and the data-
base storage system is assumed to be devoted to the storage and processing of airline
reservations; that is, it is a dedicated system. Terminal users converse with the system

regarding reservations for customers and manipulate the database. The database in this

84

example consists of records of information regarding the occupants of seats on flights.

The records appear as in figure 6.2.

In this example, terminal users generate inquiries into flight occupation status,
: reserve seats for customers on given flight numbers, etc. Five simple commands have
been implemented in the simulator:
T Add a customer to a given flight number.
Remove a customer from a given flight number.
List information on all customers on a given flight number.
Retrieve information on the customer in a given seat on a given flight number.

Count the number of passengers on a given flight number.

—{ ==
il "
o
Storage
Memary
Systamn
Il e
Inquiry
Queue

Figure 8.1 Airline reservation system.

85

Flignt # Seat # Customer Information

Figure 6.2 Database record.

Performance measures of interest include the inquiry time statistics (for example,
the mean response time) and again, system element utilizations. The inquiry time is
believed to be most important in that if terminal user inquires are queued (as in figure
8.1) it is informative to predict the queueing time statistics. The first two moments of

inquiry processing times are required if an M/G/1 inquiry queue model is to be used.

Although simplistic it will be assumed that inquiries are processed sequentially,
each PE accepts an inquiry the processes it to its completion before accepting the next
inquiry from the inquiry queue. To do otherwise would violate the single request per PE
assumption. Even though the single request per PE assumption is restrictive in this case
(multiprogramming of PE’s would be used in practice owing to the slow nature of the
disk units on which the database is stored) the experiment is worthwhile as a test of the
SMP model; future work might be directed toward relieving the monoprogrammed
assumption. See chapter 8 for the difficulties involved. Multiple request emission

modeling is an obvious SMP model enhancement for consideration.

8.1.1.1. Implementation

Consider the physical storage of the database in the memory system. Lists of
pointers will be kept in RAM modules (a subset of the set of GRM's are RAM modules),
and the database of seat occupation records will be kept in disk modules which are the

remainder of the GRM's. A request queue is present in front of each of the resource

88

modules.

A two level directory of pointers is organized as in figure 6.3. The directory ele-
ments are stored in an interleaved manner across RAM modules. Customer records are
uniformly distributed over all disk units. That is, a seat record may be stored anywhere

on the disk system, they are not clustered together into flight numbers. This represents

" the randomness or disorder evident in systems where little is known about flight seats

and/or no disk repacking is done and fragmentation reaches a steady-state. More
sophisticated disk allocation schemes would make the disk analysis phase (covered
below) more complex without sufficiently increasing validity of the example as an SMP
model test. Consider next the implementation of the five database commands: add;

remove; list; retrieve; and count.

8.1.1.2. The ADD Command

This command places passenger data into a given flight and seat number database
record. The customer's record (consisting of a name, an address, etc., assumed to be 2568
bytes of information) is placed in a disk record pointed to by the two level directory
(accession list). Note that since disk sectors may be larger than 258 bytes, there may be
several customer records in one sector. If an attempt is made to place a customer into a
used seat, it is ignored (that is, the error causes no action to be taken) although it does
take some simulated time. A flowchart/PE state diagram of operation is shown in figure
8.4. Notice that the circuit switched property is used to modify the "seat in use” field

when a customer is added (i.e., semaphores are handled).

8.1.1.3. The REMOVE Command

This command marks a given seat number, on a given flight number, as not in use
so that it may be allocated in the future. Note that no disk /O is required, only pointer
lists in RAM are modified. An appropriate flowchart/PE state diagram is shown in fig-
ures 6.5. If an attempt is made to remove a customer {rom an unoccupied seat, no

action is taken but simulated time elapses.

87

Cylinder # : Track # :

Flight info.

\

Pointar Sector # : Fleld #

"In use® bit : Orive # :

Accession List

Figure 6.3 Two levels of pointers.

Oisk
Location

a8

Numpers outsioe states
indicate state numpers
2 "RAM® Inaicates 3 RAM
moqule reference.
"DISK [/Q" Indicates
3 disk reference state.

Search first list
for a pointer w
the given flignt

Wmoer. 1 - /8 flights

3 Numoers within states inatcate:
the computation state sojoum ume; or
the GRM comnection time.

Search for an empty seat
then modify the “in use”
semaphore.

7

.5 - 9.3

Put the customer record
3 in the aisk recorg pointed o,

Figure 6.4 ADD command flowchart.

89

Search first list 10

for a pointer to
the given flignt

number
1 - U8 fliignts

Figure 6.5 REMOVE command flowchart.

8.1.1.4. The LIST Command

This command retrieves all records of all passengers on a given flight number. It
does this by sequentially accessing all records in use for the required flight number. As
such, many disk accessed are performed during this command’s execution. A flow

chart/PE state diagram is shown in figure 6.6

6.1.1.5. The RETRIEVE Command

This command retrieves the information on a passenger in a given flight, seat

number. This entails accessing the appropriate disk record. A flowchart/PE state

Searcn first list 16
for a pointer to
the given flignt

numoer 1 1- 2% flighes
\
Y/

U flignts
13
1
3 19

1 - 1/# ssats

L.oop through the flignt

accessing customer
records

Pr(seet full)
$0.%

snoty)

21 m

\J

y ! 1/8 seats
1 - 1/# seats 2
1
28
1/# seats

1

22

-

Figure 6.8 LIST command flowchart.

diagram is shown in figure 8.7. If a retrieval on an unoccupied seat is requested, no

action takes place other than checking the accession list.

g1

Searcn first list 3
for a pointer w
the given flight
rumoer
1 1-2/8 figwns
%

/¢ flignes

The ssat rsferenced The seat referenced vas

:m:u full so access the disk
a error 1 recurd

31

74

Figure 6.7 RETRIEVE command flowchart.

6.1.1.8. The COUNT Command

This command counts the number of passengers presently scheduled on the refer-
enced flight number. Notice that no disk accesses are made, only pointer lists are refer-

enced. See figure 8.8.

92

Searcn rirst list
for a pointer 0
the given flignt
number

1 - /8 fights

-

Loop through all seats
checking to see if they
are in use, if so
Incremernt the
count, if not

just continue,

Seat in use

/

]

i
t
S

Increnent the loop counter

Figure 8.8 COUNT command flowchart.

8.1.1.7. The Simulator

Commands submitted to processors arrive as random streams. (There are P proces-
sors executing their database programs independently.) This randomness represents the
independence between user inquiries that might arise if many terminals are connected to

each PE inquiry queue so that successive inquiries originate from different terminals.

93

Hence we assume that command frequencies appropriately depict inquiry streams. Like-
wise flight and seat numbers are randomly chosen in the simulator when commands are
initiated. This is sometimes inaccurate in that a REMOVE command would not nor-
mally be attempted on an empty seat, but in the simulator many may occur. Although
not very realistic, it simplifies simulation and as long as the representation of simulator
behavior is duplicated during model parameter extraction the experiment is still valid.
(The simulator source code was examined to extract the model parameters.) The com-
mands are tied together as in figure 8.9 where the top state's sojourn time is chosen to
represent the amount of time that it takes to obtain the next inquiry from the inquiry
queue. It has been assumed that there is always an inquiry ready to be processed. If
this were not the case, then a random sojourn time would be used for the top state,

again this is just another possibility that the SMP model parameters would reflect.

Statistics have been gathered on GRM utilizations, waiting times, GRM arrival
stream coefficients of variation, GRM mean queue lengths (they will not be shown due to
their direct relationship to waiting times, see equation (5.3)), and the mean command

execution time.

Pr(AOD command) et the PY(COUNT command)
PT(RENOVE command) | next inquiry | Pr(RETRIEVE command)
h“
Pr{LIST
conmand)

4 y v A

) E®EEE

Figure 6.9 Connecting the commands together.

94

8.1.1.8. Model Parameter Extraction

Computation state sojourn and RAM connection times have been deduced from the
simulator code (or flowchart). Disk access time calculations are required to obtain the

first three moments of disk access (connection) times. The calculations follow:

Let there be C cylinders on the disk drive under consideration. Also use the follow-

ing notation:

A = disk access time =
time required to move the disk head, wait for
the required sector to move under the head,
and read the sector

M = time required to move the head from its_
present position to the next required cylinder

L = rotational latency seen once the required
cylinder has been arrived at

T = sector transfer time

Then A = M + L + T. Disk module connection time is A so disk I/O states have con-

nection time moments A =~. Since M, L and T are independent:

i

A=M+L+T
AT=M"+ L%+ T+ ALM+TM+LT)
T W+ [T+ TS+ 3L+ DM + (M+ DL + (M+L)TY + 6MLT
The transfer time random variable T is constant so it is obtainable from disk drive

specifications.

The rotational latency is uniformly distributed from 0 to a maximum value of T in
the environment considered here, assuming that there is negligible dependency of the
rotational position on PE inter-disk I/O computation time. Then I =T/2; L7 =T?%/3;

LT =T%4.
Consider now the disk motion time moments. Let P be the cylinder where the disk

head rests at the initiation of the disk access P~ U(1,C) (discrete) because of the ran-

dom scattering of data records over all disk structures. Let N be the cylinder to be

stepped to N ~ U(1,C) (discrete). Then the distance to be moved is]§~1‘7]. The head

95

stepping time function is shown in figure 8.10 where stepping time has been linearly

interpolated.

Let ¢, be the probability that j cylinders must be traversed, then:

4, = Pr{|P-N| = j)

1 .
T 7=0
S Pr(N = j+k) PAP = k)
==
— C—] ~ —~ —~
+ S (Pr(N=j+1c)+Pr(N=k—j))Pr(P=k) 1€;7£C-1
b o= el
c - ~
+ Z Pr(N = k-j) PP = k)
b==C -y 41
But Pr(;\7=l:)==-lc-;,kal,-'-,0, Pr(f"::k)z—é—,, E==1--,C. So a closed form

might be obtained.!

nax

nin

T § —
|-~

Figure 8.10 Disk head stepping time function.

!t has not been pursued, the mean has been found to be about C / 3 for the number of cylinders stepped.

g6

From figure 6.10, the motion time is related to the distance to be stepped as:

m(|P-N|-1) + Mo [P-N| >0
lP«NI =0

M=

Where m is the slope of the stepping time curve:

Mm-—Mm
C-2

m ==

then

_ c-1
M=09q+)Y (mk-1)+ Mua)a:

bowwl
J— C-1
M* = Z (m(k«l) -+ Mm)zqk
F==x1

aQ

-1
M¥= ¥ (m{k-1) + M o)’ 0:

md
b=m]

Which completes a randomly accessed disk access time description.

Connection times for the drives in the analysis are taken from the above calcula-
tions where parameters M ., M .., and C are taken from simulator parameters. That

is, the physical parameters are the same for both the simulation and the analysis. The
simulator remembers P from the last disk access and uses N from the accession list so

head motion simulation is realistic. The simulator maps |P - N| into M using the linear

interpolation above. The simulator uses a uniform random variable to simulate rota-

tional latency L. At the time of simulation C - 1 was inadvertently used in the slope

curve. Hence the denominator C - 1 was also used in the analysis.

Transition probabilities have been deduced intuitively from examining the program
segment flowcharts. The Bernoulli loop has been extensively employed. Command pro-

babilities have been chosen to induce a steady-state add/delete situation:

PAADD command) = P{REMOVE command) = .35,
PHRETRIEVE command) = .1

PALIST command) = .1

Pr{COUNT command) = .1

Assuming that all flights are initially half full (the simulator starts this way), they

will stay approximately half full because PH{ADD) = P{REMOVE), furthermore the simu-

97

lator initializes seats to be full/empty in an alternating pattern. These startup charac-
teristics and command fractions were chosen so that the simulator reaches a steady-state
in reasonable time. Other more sophisticated procedures could have been developed but
simulation cost would have increased without significantly increasing the validity of the

example.

8.1.1.9. Database Results

Four separate experiments have been performed. Complexity in simulating con-
current PE activity makes simulation expensive. This is an example where the analytic
approach is comparatively economical, about a factor of 15 to 20 has been seen in the
analytic verses single simulation cost, including the computation of the three bounding
solutions described in chapter 5. Each simulation has been run three times with dif-
ferent random number generators to obtain reasonable accuracy in results, so the speed
factor may actually be 45-80. Cost prohibits the compilation of confidence intervals.

Each PE executes 2000 commands in a given experiment.

The four experiments are characterized as follows:
Experiment 1 - 2 PE’s, 2 disk units, 2 global memory modules.
100 cylinders per disk, M, == 500, M ., = 2000.
80 flights, 100 seats per flight.
Experiments 2 - the same as experiment 1 except with 3 PE’s.
Experiments 3 - 2 PE’s, 3 disks, 1 global memory module.
67 cylinders per disk (to maintain the same total disk storage).
M gyp = 500, M puy == 1333,
60 flights, 100 seats per flight.

Experiment 4 - the same as experiment 3 except with 3 PE's.

The results are summerized on the following pages. Again, any parameters not discussed

have been assumed in the simulator to represent "object code” execution time.

'$1809 aseqEIEp A} 10) 500 > ‘¢

punoq preyy 9%l 90°1l 0 0 FLLY o800 00’1 F£00l1
JNS 21 95=)) ‘punog 19(9l 801 6S€0° 188 FLL] Sico L5986’ ra.iia
JAWS g1 958 punog] “dxy 161 £r'l 850 £LS1 FLLI eLI0 | SSLL AR
ujos JjNS g1 958D 19t 60°1 1680’ ILe FLLI 120° ¥Oi6 ras Y|
17575 "punogf "wina(q 651 80°1 0800 9081 FLLY 8100 9cL'0 06161
17570 "punog "uodxy 181 gil Z81°0 8€ET FLLI #i00 | ¥e90 19933
uonnjos {/H/H o9t 80t 0800 2421 FLLI 9100 03L0 8000
suni g ‘uonEnung 99°¢ 6.8°0 So¥ L £44! SLLY L1090 ¢18'0 90105

AV ¥y A AT A M ¥SId g4 HSIdy WYdg NSIdd sumn, wonmiIxy

- - s purRuIuIO)) URIN

sejnpoul NV ¢ BYsip g '8108s3301d ¢ GF rusmibdxy

o8

punoq plej] 991 601 0 0 FLLY 0500 G680 F£001
JdINS @ 1 ?s¥) "punog] "12(9Ll o1t 2500 LGY FLLL £L10°0 | T9LLO £18Cl
AINS T os%)) "punogg "dxy 132 st L1800 098 FLL] SFIOO0 | L3S9°0 8L9F1
"ajos JINS ¢ 1 958D 81 It 1500 gLy FLLY L10°0 119L°0 88$G1
17571 'punog "uidie(q L 1 2800 998 FLLY S10'0 0590 cliL¥l
1/D/5 "punog ‘uodxyg 803 91l LEV0 81 FLLI Z100 | 010 FGLLY
donnjos [/H/H 8l 1 €800 916 FLLT ¥10°0 ££9°0 9Fr IS
sunl g "uonjRinwig 95°% ¢L80 ¥S'e 939 eLLY 9100 FILO 444!
::2\- h&&«\— 25«\: EME\S M,na‘xa WVHd Msidg sl], uonnIINY
- - - purmIuIo)) UBIN
Fo[npol NV ¢ FARp ¢ sioss00id g IF niauriadxy

o9

punoq piefy 8Ll F0'1 0 1661 €00 | 6160 0L8R
JINS &1 a5 punog 1 961 S| 68F 1651 9500 £L0 9LF1l
JNS 21 98e) Tpunog dxgy 92 80°1 836 1961 9+0°0 | <090 L5Rel
‘ujos NS T'1 95D £02 901 GEe 1661 §50°0 | <10 FoLL
1/D/ punog wiisiag 98°1 <0'l €0 6£8 1581 800 | 9590 cLeet
1/D/H "punog dodxy 1T 80°1 S0 SOt 1561 0100 | 1560 F06S1
uofnjos 175 /5 102 [T} £0 668 16¢1 00 | 1190 00L¢1
sun ¢ “donrnung £e 086°0 be LsL 0561 0500 | 0390 £COFl
lald Q\d\» hﬂﬂz\» \Qﬂt\: %m.a\: \teﬁQ‘xw Wydg NsIag st f, uonnaaxsy
- - e puvmiwo)) uespy’
INpour INVY 1 8YSIp ¢ 810853361d ¢ F Jusutiadxy
putioq pizyj e 8SO'1 0 0 1661 8F00 | ¢£90 188
dINS T'1 sse)) punog 19q e L0} £50° 12 1661 V00 | B81G0 L9101
JINS T'T 95%)) "punog A%y 182 el 180" 0¥ 1591 1800 | S8F O Licti
"Ujos gy %5wg) F%3 101 £59° L7 1551 1700 | 02350 £0501
1/D/H "punog “uissiag £27 1901 £0 }8¥ 1sel | 1800 | L850 SOt
1/D/5 "putiog "todxry 08T L 50 c58 1561 2800 | <Sivo [
uonnios I/n/n 17 L0l £0 £8¢ 1561 9200 | 9LV 0 9GLIl
Bul ¢ ‘uoljpinulig 97'¢ 0060 FE4 L3¢ 0ssl 0¥0°0 | 1290 £9F 11
My A T Wy hVd M IOy dsiay HWvdg NsId4 aunj, uonnsexy

purwwo) ueapy

dnpow Wy | sysip ¢ 'siossacoid g o RUEIUTREY: 361

100

Note from the tables that the coefficient of variation for the request interarrival
time at disk drives is generally overestimated. As a result of this, the G/G/1 based
waiting time calculations overestimate queueing times (see the G/G/1 waiting time

dependence on the interarrival time coefficient of variation (4.24)).

The source of the error seen in the prediction of the coefficient of variation may be
from inaccuracies in (4.24) itself, the higher moment waiting time calculations (recall
that the first and second moments of waiting times affect the coefficient of variation of
the interarrival times, see equations (4.28 - 4.33) for details), the Bernoulli loop first
moment matching technique (as described in section 3.2), and the superposition calcula-

tions. Point process superposition and separation calculation error is addressed shortly.

Consider experiment #1. The disk waiting times are overpredicted while the RAM

waiting times are vastly underpredicted (note that Vy, 1s underpredicted). The results

are not quite as bad as they appear, there is non-negligible additive statistical error on
small waiting times that is attributable to the SIMSCRIPT IL.5 simulation language.

Waa 1s generally underpredicted, but not by as much as is indicated in the tables.

Consider next experiment #2. There are 3 PE's so GRM waiting times increase
over experiment #1 as expected. Even though disk waiting times are overestimated here
also. the mean command execution time is underpredicted using the G/G/1 results.
This is attributable to the greater underprediction in Waae and the large fraction of
RAM references compared to disk references: naag=-4531 while 5y =.0469. These
reference statistics are sufficient to ensure that the mean command execution time will

be underpredicted even though disk waiting time is overestimated.

Also noted in the SMP to ARP reduction for the database program are the follow-

ing statistics (all PE’s behave similarly):

5, = 4175, 57 = 18547
Yorase = 4.1, Y, pisx = 177
m = 203, Tf:’;,';; = 3.48x10°
So the following coefficients of variation are deduced:

Coefficient of variation for

equivalent computation state | = 3.3

101

#

Coefficient of variation for Y, pyp = 0.46

Coefficient of variation for Y, piqe = 0.325

If these coefficients are accurate (the disk connection time coefficient of variation is
quite accurate) then it may be seen that connection times are more deterministic than
exponential CDF’s describe, and the equivalent computation time is "more” random
than an exponential CDF indicates. This coefficient though is subject to the same

higher moment inaccuracies described in the Vy_ predictions.

The hard bounds apply in all cases ezcept in the GRM arrival stream coefficients of
variation. This breakdown in the hard bounds leads to the belief that some of the most
inaccurate model equations are the point process superposition and separation calcula-

tions.
If the point process mechanics were more accurate, Vi, for the hard bounds should

be smaller than the simulated value. Inaccuracies may occur because of correlation
between request interemission times not described by the ARP representation of PE
activity. (Superposition theory is constrained by the assumption of a remewal resultant
process which is not true in general.) This correlation is related to the history effects
that were briefly described in section 3.3. Dependence between request emissions intro-

duces correlation between ARP cycle times.

As is typically true of the various waiting time calculations, the G/G/1 approach
yields greater waiting time results than the two SMP calculations. The SMP and G/G/1
results may form bounds on the actual waiting times, violations will be seen in the asym-
metric example (the SMP calculations seem too inaccurate in vastly asymmetric situa-
tions). Notice from experiment #1 SMP results that when waiting times are under-
predicted, GRM utilizations are overpredicted. Also note that the SMP results for wait-
ing times are so small that the exponential bounds (which may overestimate waiting
times) may fail to hold. This seems to indicate that there is too much error in the
independent SMP waiting time calculations to be useful, especially in asymmetric situa-
tions where the results are expected to be worse due to the mean waiting time approxi-

mation (4.9 - 4.18).

102

The case 2 SMP results in this example are numerically equal to the case 1 results.

The factors Ay, , fy» are equivalent because Vy > 1.

Using the G/G/1 calculations has given execution time predictions within 6% of
the simulated value. Considering that ¢, < 0.05 (the system is disk bound because of

the single request per PE property) this error seems quite acceptable.

Regions of validity for the various approximations have not been quantitatively
defined. The G/G/1 based solution is typically accurate enough to be used in general
since the relative difference between the SMP and G/G/1 waiting time results may not
be significant in those cases where the SMP results are best. That is, in the cases where
the SMP waiting times are most accurate, the G/G/1 results are sufficiently accurate to
be used. It seems that the G/G/1 based waiting time predictions are the most robust of

the two presented in chapter 4.

6.1.2. List Merge Program

In this example P PE’s merge independent preordered lists. Each PE merges two
preordered lists contained in global memory to form a new ordered list kept in global
memory. Since all PE’s are acting on separate list elements, this is equivalent to the last
full activity phase of a parallel merge sort, at the point where half of the PE’s would

subsequently become inactive.

Instructions and local data are stored in local memory. The lists to be merged are
stored in global memory in an interleaved manner, see figure 8.11. The base address of
each list (there are two source lists and one destination list for each PE) is mapped into

GRM 1.

A flowchart of PE activity is shown in figure 6.12 while a state diagram is shown in
figure 8.13. All GRM connections constitute single word transfer times so all connection
times are deterministic with mean 1 or 10, both have been used in the experiments.
Object code execution times for computation states have been chosen so that like opera-

tions require the same execution times. Again, the simulator is a set of P list merge pro-

cessors written in SIMSCRIPT IL.5.

To obtain reasonable program execution times for comparisons, the two source lists

are taken to be 258 elements long (this choice also seems to indicate that a system

103

START

f‘

/

A\

A\

/

A\

A\

/

/

Urap
around

v/

\/
ENO

GRM 2

GRM M

Figure 6.11 List layout in GRM's.

W “*%WK«‘%X *

104

Initialize

I <= Length
ard

L denotas the source list.
Dest cenotes the destination list.
I, J, and K are indices.

J <= Length
?

Emit the remaincer
of the non-exhausted
list

Dest(K) := L(I)

I:21+1

Dest(K) := L(J)
Ji=Je+1

/

K

K+ 1

Continue

Figure 8.12 List merge flowchart.

1056

1
0.9980392
»(_ Agdress) 9 Address 14
0.001%608
Read 10 Read 15
2
Agdress) 11 Adgress 16
3
4 I
13
Compare Increment) 18
5
Cmite) s
—
Increment Increment) 19
and 7
0.5 Compare
a.s \\ Exhaust the remaining list.
')

No operation 8

Probabilities shown are for source 1ist iangtns
of 256.

Figure 6.13 List merge PE state diagram.

"steady-state” may be reached relatively quickly, a few hundred GRM references seem to

suffice in many circumstances). The simulator uses two lists of unformly distributed

random numbers that have been presorted. Under these conditions (Knu73] describes an
analysis of a merge algorithm, it is shown that the mean number of comparisons done on
the two lists before one is exhausted is 2X256 - 2 = 510. This is then the mean number]

of loop executions evident for the list merge loop. 1/510 is the appropriate Bernoulli

108

loop exiting probability used in the analysis. Since there are 512 elements in the result
list, an average of 2 must be directly obtained from the source list that was not
exhausted so the second loop (states 3-7) is executed on the average twice, its Bernoulli
exit probability is 1/2.

Since this is a relatively simple example, connection and sojourn times are simple to
obtain. Only one modeling point needs yet to be addressed: reference patterns. The list
elements are interleaved so in the steady-state (e.e., where large lists are processed) all
GRM's will be referenced equally often, hence according to the fractional argument we
set 1,.m = 1/M (* denotes any appropriate index). In an effort to examine this refer-
ence pattern approximation, simulations have been done for actual patterns generated
by the list merge program and synthetic references generated according to the model’s

fractional approximation (uniformly distributed randomly chosen GRM’s).

To verify the model on various sized systems, several configurations have been
examined. The results are shown on the next few pages for the short (Y,;m =1) and

long (Y,.n = 10) connection times with the actual and random reference patterns.

107

Short Connection Times, Actual Reference Patterns

PxM om Pm Execution Time
2x2 0.0 0.1818 11248 Simulated
0.0278 0.1808 11281 Case 1 SMP
0.0423 0.1804 11310 Case 2 SMP
0.0096 | 0.1814 11244 G/G/1
1.0 -0.2 -0.04 GJ/G/1% error
4x1 0.2506 0.6949 11760 Simulated
0.2643 0.6937 11763 Case 1 SMP
0.3040 0.6889 11844 Case 2 SMP
0.2305 | 0.6978 11694 G/G/1
-2.0 0.4 -0.6 G/G/19% error
4x2 0.1009 0.3570 11453 Simulated
0.1265 0.3553 11482 Case 1 SMP
0.1371 0.3547 11504 Case 2 SMP
0.1171 | 0.3559 11463 G/G/1
1.6 -0.3 0.1 G/G/19% error
4x4 0.0525 0.1804 11354 Simulated
0.0650 0.1706 11357 Case 1 SMP
0.0677 0.1795 11362 Case 2 SMP
0.0703 0.1795 11367 G/G/l
1.8 -0.5 0.1 G/G/1% error
8x4 0.1652 0.3531 11587 Simulated
0.1623 0.3531 11555 Case 1 SMP
0.1647 0.3529 11560 Case 2 SMP
0.2006 0.3507 11633 G/G/l
3.5 -0.7 0.4 G/G/1% error
8x8 0.0750 0.1802 11404 Simulated
0.0792 0.1792 11386 Case 1 SMP
0.0798 0.1792 11387 Case 2 SMP
0.0931 | 0.1787 11414 G/G/1
1.8 -0.8 0.1 G/G/1% error

108

Short Connection Times, Random Reference Patterns
PxM Wom Pm Execution Times
2x2 0.0 0.1818 11248 Simulated
0.0096 0.1814 11244 g}/G/l
1.0 -0.2 0.4 p.error
E 4x1 0.2506 0.6949 11760 Simulated
~ 0.2305 0.6978 11694 237/ G/1
-2.0 0.4 -0.6 Up error
4x 2 0.077 0.3583 11405 Simulated
0.1171 0.3559 11463 g}/G/l
4.0 0.7 0.5 0 errot
4x4 0.02 0.1808 11306 Simulated
0.07 0.1795 11367 ?JG/I
4.1 0.7 0.5 5 _error
8x 4 0.1641 0.3528 11584 Simulated
0.2006 0.3507 11633 {(}JG/l
3.7 -0.6 0.4 h_error
8x8 0.0696 0.1795 11392 Simulated
0.0931 0.1787 11414 G G/1
2.4 -0.4 0.2 0 error

Since the same analysis results apply here as on the previous page, SMP waiting

time results are not shown, they are as before.

109

Long Connection Times, Actual Reference Patterns
PxM Wom Pm Execution Time
2x2 2.7350 0.6164 33197 Simulated
1.0535 0.6868 20701 Case 1 SMP
1.7133 0.6573 31035 Case 2 SMP
1.4860 0.6673 30571 G/G/1
-9.8 8.3 -7.9 G/G/1 % error
4x1 26.4694 0.99C0 81735 Simulated
22.3081 1.0000 73048 Case 1 SMP
22.6679 1.0000 73782 Case 2 SMP
20.1935 1.00C0 68734 G/G /1
-17.2 1.0 -15.9 G/G/1 % error
4x2 10.1350 0.8423 48365 Simulated
6.3781 1.0000 40551 Case 1 SMP
6.6620 0.9920 41130 Case 2 SMP
NC NC NC G/G/1
-17.2 17.8 -15.0 Case 2 SMP % error
4x4 4.0892 0.5654 35979 Simulated
2.6344 0.6198 32914 Case 1 SMP
2.7437 0.6150 33137 Case 2 SMP
3.8492 | 0.5764 35392 G/G/1
-1.7 1.9 -1.6 G/G/1 9% error
8x4 12.1498 7690 52477 Simulated
11.8418 0.7892 51697 Case 1 SMP
11.9416 0.7861 51900 Case 2 SMP
NC NC NC G/G/1
-0.0 2.2 -1.1 Case 2 SMP % error
8x8 5.0920 0.5303 38061 Simulated
3.1802 0.5995 34027 Case 1 SMP
3.2035 0.5987 34075 Case 2 SMP
47424 | 0.5482 37214 G/G/1
-2.3 3.4 -2.2 G/G/1 % error

NC denotes no convergence, in this event error given is computed using the case 2 SMP analysis.

M

110

Long Connection Times, Random Reference Patterns
PxM Wi Pm Execution Time
2x2 2.4202 0.6282 32555 Simulated
1.4860 | 0.6673 30571 G/G/1
7.5 6.2 -6.1 0% error
i 4x1 | 26.4694 | 0.9900 81740 Simulated
20.1935 1.0000 68734 G/G/1
% -17.2 1.0 -15.9 9, error
4x2 9.9947 0.8478 48059 Simulated
6.6620 | 0.9920 41130 Case 2 SMP
-16.7 17.0 -14.4 % error
g 4x4 3.8029 | 0.5746 35392 Simulated
3.8492 0.5764 35392 G/G/1
0.3 0.3 0 %% error
; 8x 4 11.7522 0.7838 51682 Simulated
11.9416 0.7861 51900 Case 2 SMP
. 0.9 0.3 0.4 9% error
8x8 4.5072 0.5475 7038 Simulated
4.7424 0.5482 37214 G/G/1
1.0 0.1 0.5 %% error

111

There are several points to notice about the list merge results. First note that in
the short connection time case, a 2x 2 system self-synchronizes. This has been noted in
other 2x2 experiments not shown here. It has never been seen in systems other than
2x2's, although it is possible. Self synchronization does not occur in the long connection
time case because equivalent state 1 mean sojourn time is not sufficient to allow connec-

tions by other PE’s to be completed before the next request emission.

Secondly note that both the SMI* and G/G/1 waiting time calculations are suffi-
ciently accurate that either may be used. Reference time error is computed sncluding the
connection time because execution time error will be due to errors accrued in total GRM
use time more directly than just waiting times. It is inappropriate to base error measure
on a possibly small quantity (notice the magnitude of the waiting times for the short
connection time case where the connection time is 1, they are very small). Hence error
in GRM queueing times will include the connection time as:
Wom + Vom)ese = (Wom + Vym)m

(Wom + Yrm)om

%Error == X 100%

In the short connection time‘ case, the range of execution time error is +1% {com-
puting error of the analytic prediction verses the simulated value). In the long connec-
tion time case, execution time error ranges from -16% to +1%. Note that in the long
connection time case the G/G/1 waiting time based solution failed on compressor sys-
tems (P > M). It produced waiting time predictions that oscillated between extremes as

the fixed point iteration proceeded. In this case the SMP based results were used.

Finally note that in both the actual and synthetic reference patterns, nearly the
same simulated results were obtained. This fact supports the applicability of using refer-

ence fractions as time invariant probabilities.

The poorest performance of the waiting time calculations is present in compressor

systems. This is expected because these systems display the most coupling between the

processes {Zp (¢), t 2 0}. This may be qualitatively seen by considering extreme cases: if
there is one GRM, all PE's contend over it, thereby creating coupling between SMP’s at
time ¢; only one SMP may be in a GRM use state (connection phase) at time ¢. This
exclusion influences the time limiting system state occupation probabilities. System

state probabilities are not appropriately represented by simple products as in (3.3). The

T prmamapssin]
1 P

112

assumption that Poisson time statistics apply at emission times is inaccurate due to
coupling.

At the other extreme, when there are a large (infinite) number of uniformly used
GRM'’s, there will be negligible coupling between SMP’s because they rarely interact in a

temporal manner through GRM queueing; each may achieve its potential.

8.2. Synthetic Experiments

Three sets of results will be shown. The first set of data concerns a correlation test
experiment where two simple loops with different characteristics are executed in an alter-
nating sequence to determine the applicability of me = me and the Bernoulli loop

approximation.

The second set of data examines an asymmetric example where each PE behaves as
an ARP with highly asymmetric behavioral characteristics. The ARP description was
chosen for its simplicity and the idea that fixing some stochastic properties while others

are being studied aids interpretation of the results.

The third set of data shown here was generated by [Bha73]. It will be used to
examine the applicability of the SMP model's physical analysis in a highly discrete
environment. Differences in queueing disciplines should be evident here in that many of
the previous models of memory interference — of which [Hoo77] is a good example -- are
based on a "random request selection” priority whereas the SMP physical analysis shown
in chapter 4 is based on the FCFS discipline. The SMP model physical analysis does not

include terms representing the occurrence of simultaneous events.

8.2.1. Simple Correlation Tests

Consider the state diagram shown in figure 8.14. Two loops consisting of computa-
tion and reference states are executed in sequence (repeatedly as state 5 provides a tim-
ing base for cycle time examination). The number of times each loop is executed is con-
stant and is given by L, and L, respectively. That is, the simulator executes the states
1 and 2 exactly L, times and then proceeds to execute states 3 and 4 L times. After
completing the two loops it starts over again. All computation state sojourn and con-

nection times are deterministic, this is often the most difficult case of CDF choices to

113

handle accurately using a "continuous time” description that the G/G/1 equations exem-

plify.
To check those effects believed to be important, the connection times for state 2

and 4 are different and the lcop counts are also different.

ovmoutas o

times

Synthetic state S
(zers sojourn time)

Figure 6.14 Simple correlation test PE state diagram.

114

Following are correlation test results, all simulated results are the average over
three runs. Reference patterns are uniform over all GRM’s, remaining parameters are

also symmetric across all PE’s and GRM’s.

Example 1:
Sy =10, Ss=20
Yam = 5.0, Yym =10
L 1 ™ 500, L n = 100
Example 2:
S, = 1.0, S,s=1.0
Yem = 100.0, Youm = 1.0
L 1 = 1, L g =
—— - t
PXM W, Pm C, 55 !
2x2 1.115 | 0.6554 | 3968 | Simulated
573 | 0.7135 | 3644 | Case 1 SMP
887 | 0.6785 | 3832 | Case 1 SMP
938 | 0.6731 | 3863 G/G/1
4x4 1.8769 | 0.5886 4408 Simulated
1.3193 | 0.6203 | 4192 | Case | SMP
1.3600 | 0.6159 | 4221 | Case 2 SMP
1.9210 | 0.5711 | 4553 G/G/1
Example 1
8x8 2.2653 | 0.5589 | 4662 Simulated
1.6292 | 06078 | 4278 | Case 1 SMP
1.6397 | 0.6060 | 4284 | Case 2 SMP
2.3685 | 05507 | 4721 G/G/1
16 x 16 | 2.4498 | 0.5458 4775 Simulated
1.7560 | 0.5072 | 4354 | Case 1 SMP
17584 | 0.5970 | 4355 | Case 2 SMP
25350 | 0.5392 | 4822 | G/G/1 |
2x2 21.7 0.6905 146 Stmulated
21.0 | 06879 | 147 | Case 1 SMP
23.7 | 06714 | 150 | Case 2 SMP
326 | 0.6004 | 163 G/G/1
4x4 34.4 0.5870 170 Simulated
328 | 05085 | 169 | Case 1 SMP
33.0 0.5669 169 Case 2 SMP
42.3 | 05383 | 188 G/G/1
Example 2
8x8 40.4 0.5474 185 Simulated
38.1 0.5635 179 Case | SMP
381 | 0.5632 | 179 | Case 2 SMP
482 | 0.5062 | 200 G/G/1
16x16 | 445 | 05223 | 197 Simulated
416 | 05419 | 186 | Casel SMP
41.6 0.5418 188 Case 2 SMP
60.2 | 0.4519 | 224 G/G/1

115

Results seem to indicate that the Bernoulli loop approximation is sufficient for first
moment predictions. The waiting time average from the simulator is W,, accumulated
during the simulations, it is not me . The cycle time simulated should reflect inaccura-
cies induced by the state dependence, if it is not detectable from state cycle times, then
it is sufficient to use Wp,,.. The second example does display cycle time error that may
be attributable to imaccuracies in the state independence approximation the error is not
excessive. Contrary examples might be devised but in typical circumstances the state

invariant waiting time calculations seem sufficient.

68.2.2. Asymmetric Tests

In this example PE's behave as ARP’s with vastly different behavior characteris-
tics. The example was chosen to display errors in the waiting time calculations in a sys-

tem whose behavior is difficult to predict accurately.

Since systems with P > M are most difficult to handle accurately, the example con-
siders a 7x4 system. To check asymmetric calculations, some PE’s "prefer” a certain
GRM, in particular one PE uses exclusively one GRM. This preference was chosen to
check the dependence of a PE’s waiting time on its own use of the GRM, i.e., the depen-

dence of Wm on p,, . In this case, PE 5 uses only GRM 1.

CDF's have also been varied between experiments, the following CDF's have been

used: deterministics; exponentials and Erlangs; and uniform CDF's.

Threshold schemes have also been changed and the calculations done for two thres-k
holding (requestor counting) schemes: the one described by equations (4.12) and (4.13);
“and a simple scheme [Q;, | = |#,,|. Parameters and results are shown on the next few
pages.

For all three test cases, the GRM reference matrix is:

" 118

00 05 025 025

p
0.0 00 05 0.5
0.1 0.2 03 0.4
7 = 0.4 03 02 0.1

1.0 00 0.0 0.0

0.2 05 01 0.2

0.7 02 005 0.05

The first case equivalent connection time CDF’s are given by:

. E(98,8) E(69,8) E(48, 3)
| | E(28,3) E(90,10)
E(98,7) E(76,5) E(23,8) E(82,5)
Y(t) = E(94,9) E(20,5) E(58,3) E(78,4)

E(97,8)
E(57,4) E(45,10) E(853) E(11,1)
E(42,10) E(18,8) E(24,2) E(91,5)

E(a,x) denotes an Erlang CDF, with mean « and « stages of exponential service.

117

In cases 2 and 3, the following connection time CDF’s apply:

n3---~~-—----——>~
u(t-98)
P
u(t-968) u(t-76)
Y'(t) = u(t-94) u(t-20)
ﬁ(t-97)
u(t-37) ut-45)
u(t-42) u(t-18)

u(t) is the unit step function: u(¢t<0) = 0, u(¢t>0) = 1.

(t-69) u(t-46)
u(t-28) u(t-90)
u(t-23) u(t-32)

(t-58) u(t-76)

u(t-85) u(t-11)
u(t-24) uft-91)

The state 1 (equivalent) computation time CDF’s are given by:

Case I, State 1 Case 2, State 1

p U(29,83) E(58,1)

E(23,4) E(23,1)

E(57,9) E(57,1)

S(1) = U(25,37) E(31,1)
U(30,95) E(62.5,1)
U(55,88) E(61.5,1)

E(19,2) E(19,1)

U(a.8) denotes a uniform distribution between a and 4.

Case 3, State 1

B

u(t-58)
u(t-23)
u(t-57)
u(t-31)
u(t-62.5)
u(t-81.5)
u(t-19)

Case 1 is composed of Erlang and uniform CDF'’s; case 2 is composed of exponential

computation times and constant connection times; case 3 displays only deterministic

computation and connection times. The results are shown next.

Case 1: Simulated and G/G/1 results

Thresholding is given by {4.12) and (4.13).

GRM1 GRM2 GRM3 GRM¢4

14.4 10.9 65.8 Simulated
PE 1 19.4 10.8 92.4 G/G/1 Soln.
4.4 0.1 23.8 % error
11.5 4.7 Simulated
PE 2 15.5 29.7 G/G/1 Soln.
10.7 4.0 % error
128.8 31.7 14.8 50.9 Simulated
PE 3 | 1449 37.2 14.6 52.8 G/G/1 Soln.
7.2 5.1 -0.5 1.4 9% error
105.6 37.3 13.4 67.7 Simulated _
PE 4 | 97.4 35.9 11.6 95.8 G/G/1 Soln. | W,,
: -4.1 -2.4 -2.5 19.6 7% error
78.8 Simulated
PE5 | 75.8 G/G/1 Soln.
-1.7 0% error
) 131.8 32.3 14.5 T4.4 Simulated
PE6 | 150.2 34.4 13.2 108.1 G/G/1 Soln.
E 9.7 2.7 -1.8 39.5 %% error
115.1 38.9 17.5 74.8 Simulated
PE7 | 113.2 36.2 14.8 102.2 G/G/1 Soln.
- -1.2 -4.7 8.5 16.5 77 error
.9699 9973 .3990 7930 Simulated
9724 5712 3824 7682 G/G/1 Soln. Oom
: -0.3 -4.4 -4.92 -3.1 %% error
73.3 56.3 | 382 72.4 Simulated _
67.2 49.5 38.2 71.9 G/G/l Soln. X,
-8.3 -12.1 0.0 0.7 o, error
0132 .0106 0104 .0110 Simulated
0132 | .0103 .0100 .0106 G/G/l Soln. A
0 -2.8 -3.8 -3.6 7% error
697 .824 1.06 647 Simulated
672 805 799 793 G/G/1Soln. | Vi
-3.6 -2.3 -24.6 22, 9% error

119

Case 1: SMP case 1 and case 2 results

Thresholds are given by (4.12) and (4.13).

GRM 1 GRM2 GRM3 GRM¢4
13.9 10.0 41.4 SMP case 1 |
PE 1 13.8 10.0 41.8 SMP case 2
11.5 23.6 SMP case 1
PE 2 11.2 22.8 SMP case 2
75.0 26.6 13.4 31.5 SMP.case 1
PE 3 | 78.3 26.6 13.7 32.7 SMP case 2
52.2 29.0 10.9 40.7 SMP case 1 | __
PE 4 | 54.3 29.0 10.8 40.9 SMP case 2 W,,,,
44.6 SMP case 1
PE 5 | 45.0 SMP case 2
78.0 25.1 12.5 41.5 SMP case 1
PE6 | 81.8 25.2 12.5 42.0 SMP case 2
48.7 28.9 14.0 40.6 SMP case 1
PET7 | 585 29.1 14.0 40.8 SMP case 2
1.0 (1.20) 66073 4373 .8682 SMP case |
1.0 {1.18) | .6558 4359 8662 SMP case 2 Pm |
67.2 49.5 38.2 719 SMP case 1 _
67.2 49.5 38.2 71.9 SMP case 2 |
.0170 0124 .0114 .0120 SMP case 1
.0165 0122 .0114 .0120 SMP case 2)\L_
.881 .980 .846 .866 SMP case 1
.819 968 843 .863 SMP case 2 VA}"‘
-3.6 -2.3 -24.6 22.6 9% error

Error has not been computed due to the clear inaccuracies when compared to the
G/G/1 based waiting time predictions. Parenthesized utilizations are those that result
from using utilization equations with the solution waiting times, clearly the waiting

times are too small in these cases so the actual utilization predictions should be 1.0.

120

Case 2: Simulated and G/G/1 results

Thresholds are given by (4.12) and (4.13).

GRM1 GRM?2 GRM3 GRM¢4
15.3 9.3 62.0 Simulated
PE 1 17.3 78 87.4 G/G/1 Soln.
1.8 -1.9 23.5 07 error
10.2 32.4 Simulated
PE 2 12.9 33.5 G/G/1 Soln.
, 7.5 0.9 9% error
1263 | 30.6 124 9.3 Simulated
PE3 | 1447 | 33.2 11.3 48.0 G/G/1 Soln.
i 8.3 2.4 -3.1 -1.0 9% error
102.0 34.0 11.7 64.3 Simulated .
PE4 | 90.8 32.0 9.3 91.1 G/G/1 Soln. | W,y
-5.7 -3.7 -3.4 19.1 9% error
82.4 Simulated
PES5 | 69.3 G/G/1 Soln.
-7.3 % error
126.2 28.8 127 66.4 Simulated
PE 6 149.9 29.6 10.5 103.6 Cale
12.9 1.1 -2.8 48.1 % error
114.2 35.2 15.2 68.5 Simulated
PE 7 106.8 32.1 11.7 g G/G/l Soln.
-4.7 -5.8 -3.9 18.3 9% error
9713 6025 .4062 8053 Simulated
1.000 | .5835 | .3937 7944 | G/G/1Soln. | pm
3.0 -3.2 3.1 -1.4 9% error
73.2 55.9 38.2 72.2 Simulated _
67.2 9.5 38.2 71.9 G/G/1 Soln. | X,
-8.2 -11.4 0 -0.4 7 error
0133 .0108 .0106 0112 | Simulated
0137 0105 .0104 .0109 G/G/l Soln. A
3.0 -2.8 -1.9 -2.7 9% error
.630 846 | 1.02 628 Simulated
669 822 .789 788 G/G/1 Soln. | Vi
6.2 -2.8 -22.6 25.5 %% error

121

Case 2: SMP case 1 and case 2 results

Thresholds are given by (4.12) and (4.13).

GRM 1 GRM2 GRM3 GRM¢4
11.7 74 36.1 SMP case 1
PE 1 11.6 7.5 36.5 SMP case 2
9.2 18.9 SMP case 1
PE 2 8.9 18.2 SMP case 2
68.4 22.7 10.5 27.3 SMP case |
PE3 | 715 22.7 10.8 28.4 SMP case 2
47.5 24.8 8.5 35.4 SMP case 1 | __
PE 4 | 49.3 24.7 8.7 35.8 SMP case 2 | W,,
40.9 SMP case 1
PE S5 | 41.2 SMP case 2
71.3 21.2 10.0 36.0 SMP case 1
PE6 | 74.8 .1 10.0 36.4 Calce
44.4 24.7 11.1 35.3 SMP case 1
PE7 | 53.0 24.8 11.1 35.4 SMP case 2
1.0 (1.24) | .6784 4507 .8970 SMP case 1
1.0 (1.22 6737 4494 .8949 SMP case 2 P |
67.2 49.5 38.2 71.9 SMP case 1 -
67.2 49.5 38.2 71.9 SMP case 2 | X, |
.0176 0128 0118 0124 SMP case 1
0171 0126 .0118 0124 SMP case 2 Ag]
.899 979 .830 .846 SMP case 1
.840 967 826 844 SMP case 2 | V\i

ll 122
Case 3: Simulated and G/G/1 results

Thresholds are given by (4.12) and (4.13).

GRM1 GRM2 GRM3 GRM¢4
12.2 8.4 61.1 Simulated
PE 1 17.0 7.6 86.9 G/G/1 Soln.
4.4 -1.0 24.1 9% error
9.75 32.3 Simulated
PE 2 12.7 32.9 G/G/1 Soln.
8.1 0.5 9% error
126.2 28.1 12.3 48.8 Simulated
PE3 | 1436 32.4 11.0 47.5 G/G/1 Soln.
7.8 4.1 3.7 -1.0 9% error
103.2 32.1 10.3 63.3 Simulated -
PE 4 | 90.1 31.0 9.0 90.7 G/G/1 Soln. | W,
‘ -5.6 -2.1 -1.9 19.7 9 error
87.3 Simulated
g PE5 | 70.6 G/G/1 Soln.
" -9.1 %% error
130.0 30.5 12.8 70.5 Simulated
N PE 6 148.7 29.0 10.3 103.3 Cale
-10.0 -2.0 3.2 2 % error
. 104.9 33.9 16.1 63.9 Simulated
PET | 97.9 31.1 11.5 97.0 G/G/1 Soln.
’ -4.8 -5.4 -11.5 17.8 9% error
9723 6115 .4087 8072 Simulated
1.00 .5862 3954 .7988 G/G/l Soln. Pom
2.8 -4.1 -3.3 -1.0 % error
74.5 56.1 38.1 72.4 Simulated _
67.2 19.5 38.2 71.9 G/G/1 Soln. | Xa.
-90.8 -11.8 0.3 0.7 %% error
0134 .0109 0104 0112 Simulated
0139 .0106 .0104 .0110 G/G/l Soln. A
3.7 -2.8 0 -1.8 9% error
619 a7 991 604 Simulated
647 795 T2 768 G/G/1Soln. | Vi}
4.5 2.3 -22.1 27.2 9% error

123

Case 3: SMP case 1 and case 2 results

Thresholds are given by (4.12) and (4.13).

GRM 1 GRM2 GRM3 GRM¢4
1.7 7.4 36.0 SMP case 1
PE 1 11.6 7.4 36.4 SMP case 2
9.1 19.0 SMP case |
PE 2 8.9 18.1 SMP case 2
67.9 22.6 10.5 27.2 SMP case 1
PE3 | 71.3 2.7 10.7 28.4 SMP case 2
47.0 24.6 8.5 354 SMP case 1 | __
PE 4 | 49.1 24.7 8.6 35.6 SMP case 2 | W,,
40.5 SMP case 1
PE S | 41.0 . SMP case 2
70.7 21.0 9.9 35.9 SMP case 1
PE6 | 74.6 22.0 10.0 36.4 SMP case 2
43.3 24.5 11.0 35.2 SMP case 1
PET7 | 52.6 247 11.1 35.4 SMP._case 2
1.0 (1.24) | 6793 | .4512 8980 | SMP case 1
1.0 (1.22) | .6741 .4497 .8955 SMP case 2 fn |
67.2 49.5 38.2 71.9 SMP case 1 _
67.2 49.5 38.2 71.9 SMP case 2 | X,
0177 .0128 .0118 .0124 SMP case 1
0172 .0126 .0118 .0124 SMP case 2 Az |
.830 955 813 .829 SMP case 1
.799 .939 807 .825 SMP case 2 | V7

124

Case 1: Simulated and G/G/1 results with @,, = #,.

GRM1 GRM?2 GRM3 GRM¢4
14.4 10.9 65.8 Simulated
PE 1 19.8 10.8 88.3 G/G/1 Soln.
4.8 -.1 20.1 %% error
11.5 34.7 Simulated
PE 2 15.5 4.3 G/G/1 Soln.
10.7 7.7 9% error
4 128.8 31.7 14.8 50.9 Simulated
PE 3 | 216.7 37.4 14.4 51.7 G/G/l Soln.
39.1 5.3 -1.1 0.6 % error
» 105.6 37.3 13.4 67.7 Simulated .
PE4 | 1008 | 427 | 116 o1 | G/G/1Soln. | W,
L -2.4 9.4 -2.5 16.3 9% error
78.8 Simulated
PE5 | 76.7 G/G/1 Sol.
-1.2 % error
131.8 32.3 14.5 74.4 Simulated
PE6 | 2241 | 34.0 13.2 1021 | G/G/1 Soln.
48.9 2. -1.6 32.4 7 error
115.1 38.9 17.5 74.8 Simulated
PE7 | 1079 | 429 14.7 96.2 G/G/1 Soln.
4.6 6.6 -8.7 12.9 %% error
.9699 5973 .3990 7930 Simulated
.9631 8597 3750 7514 G/G/1 Soln. Pm
-0.7 -6.3 -6.0 _-5.2 9% error
73.3 56.3 38.2 72.4 Simulated _
67.2 49.5 38.2 71.9 ((;}/G/l Soln. X
-8.3 -12.1 0.0 0.7 Y0 error
.0132 .0106 .0104 0110 Simulated
0131 | 0100 | .0098 0103 | G/G/1Soln. | XJ
-0.8 -5.7 -5.8 -6.4 9% error
697 .824 1.06 647 Simulated
704 838 818 817 G/G/1 Soln. | Vi
1.0 1.7 -22.8 26.3 % error

125

Case 2: Simulated and G/G/1 results with g,, = #,,

GRM1 GRM2 GRM3 GRM¢4

15.3 9.3 62.0 Simulated
PE 1 17.6 738 83.2 G/G/1 Sola.
2.0 -1.9 19.6 % error
10.2 32.4 Simulated
PE 2 13.0 317 G/G/1 Soln.
7.7 4.3 9% error
126.3 30.6 12.4 49.3 Simulated
PE 3 216.4 334 11.1 46.9 G/G/l Soln.
40.5 2.6 -3.7 -1.8 % error
1020 | 34.0 1.7 64.3 Simulated _
PE4 | 92.0 38.2 9.3 86.2 G/G/1 Soln. | W,,
-5.4 7.8 -3.4 15.6 % error
82.4 Simulated
PE5 | 70.5 G/G/1 Soln.
-6.6 % error
126.2 28.8 12.7 66.4 Simulated
PE6 | 2237 | 29.3 10.5 973 G/G/1 Soln
53.2 0.7 -2.8 39.9 % error
114.2 35.2 15.2 68.5 Simulated
PE7 | 1016 | 383 11.7 915 G/G/1 Sola.
-8.1 5.8 -89 14.4 % error
9713 6025 .4062 8053 Simulated
9934 | 5718 | 3866 | 7774 | G/G/1Soln. | p,
2.3 -5.1 -4.8 -3.5 % error
73.2 55.9 38.2 72.2 Simulated _
672 | 495 | 382 719 | G/G/1Soln. | X,
-8.2 -11.4 0 -0.4 % error
0133 .0108 0108 0112 Simulated
.0136 .0103 .0102 0106 G/G/l Soln. A
2.3 -4.6 -3.8 -5.4 % error
.630 .846 1.02 .628 Simulated
.696 854 .806 810 G/G/1 Soln. | Vii
10.5 0.9 -21.0 29.0 % error

128

Case 3: Simulated and G/G/1 results with @, = #,.

GRM1 GRM?2 GRM3 GRM¢4

12.2 8.38 61.1 Simulated
PE1 17.4 7.6 82.6 G/G/1 Soln.
4.7 -1.0 20.1 9% error
9.75 32.3 Simulated
PE 2 12.8 37.1 G/G/1 Soln.
8.5 3.9 % error
126.2 28.1 12.3 48.8 Simulated
PE 3 | 2148 32.7 11.0 46.4 G/G/1 Soln.
39.9 4.4 -3.7 -1.8 % error
103.2 32.1 10.3 63.3 Simulated —
PE4 | 91.3 37.1 9.1 85.7 G/G/1 Soln. | W,
-6.0 9.6 -1.8 16.1 % error
87.3 Simulated
PES5 | 71.9 G/G/1 Soln.
-8.4 % error
130.0 30.5 12.8 70.5 Simulated
PE6 | 2220 28.7 10.3 96.8 G/G/1 Soln.
-49.2 -2.4 -3.2 32.3 % error
104.9 33.9 16.1 68.9 Simulated
PE7 | 93.4 37.2 11.4 90.7 G/G/1 Soln.
-7.8 6.4 11.7 13.6 % error
9723 6115 .4087 8072 Simulated
1.001 5745 .3883 7815 G/G/1 Soln. Pm
2.8 -6.1 -5.0 -3.2 %% error
74.5 56.1 38.1 72.4 Simulated _
67.2 49.5 38.2 719 G/G/1 Soln. X
-9.8 -11.8 0.3 0.7 % errot
0134 0109 .0104 0112 Simulated
0138 | 0104 | .0102 0107 | G/G/1Soln. | X}
3.0 -4.5 -1.9 -4.5 %% error
619 177 .991 604 Simulated
673 826 .788 790 G/G/1Soln. | V)i
8.7 5.9 -20.5 30.8 % errot

127

When the thresholding scheme is Q,, = #,,, the G/G/1 results are poor when
compared to the results obtained when using the thresholding scheme in (4.12) and

(4.13).

8.3. Comparison with a Previous Synchronous Model

Consider a P X M system where each PE’s behavior is represented by an ARP with
constact, unit valued, computation state sojourn and connection times. Requests are
directed uniformly over all GRM's. The table shown below displays results from the
SMP model and the results from [Hoo77], the simulated confidence interval is from

[Bha73] as shown in [Hoo77)].

Px M Om 90 % Con. Int. From SMP model
[Hoo77]

4X4 .4463 4549, .4569 4480 G/G/1
4588 SMP case |
.4569 SMP case 2

4 X8 .2360 2391, .2406 2377 G/G/1
.2392 SMP case 1
.2390 SMP case 2

8 X 4 7167 7115, .7302 7447 G/G/1
.7864 SMP case 1
.7840 SMP case 2

§xX8 4334 .4320, 4418 .4403 G/G/l
.4508 SMP case 1
.4504 SMP case 2

The results are comparable even thought the physical analysis done in chapter 4
does not include effects due to synchronous events such as request collisions. Note that
the results are tolerant of the different queueing disciplines that were used, in [Hoo77] a
random service priority was assumed — the simulation data represents this situation.
The physical analysis in chapter 4 assumed a FCFS service discipline but the difference
in results is small. This is to be expected (approximately) because mean queueing times
are independent of work conserving and non-job dependent service priorities in ideal,
open queueing stations [GrH74]. The effects here are comparable although different ser-

vice disciplines may not yield ezactly the same mean waiting times because of depen-

128

dence on higher moments (which are affected by the queueing discipline). For example,
since different service disciplines affect second moments of queueing times, the coefficient
of variation of queue interarrival times is affected by service disciplines, which in turn
affects the mean queueing times (4.24). The service discipline might be neglected or

a,sumed to be FCFS because of the mean value approximate equivalence.

6.4. Conclusions

Experimental data has been shown for many system configurations. The accuracy
of the model calculations described in chapters 3 through 5 have been found to be accu-
rate. Considering the complexity of the problem, the accuracy is quite acceptable. It is
believed that enough experimental data has been shown to establish the model calcula-

tions as reasonably accurate.

By considering data from both the independent SMP and the G/G/1 calculations
for waiting times it may be concluded that the G/G/1 calculations seem to give the best
consistent set of predictions. They work well in both asymmetric and symmetric situa-
tions, they do fail to converge in compressor systems with high GRM utilizations. In
these cases, the independent SMP waiting time calculations may be used with reasonable

success.

CHAPTER 7

A CACHE MODELING EXAMPLE

This chapter describes a processor/cache memory model. A simple instruction exe-
cution atom is formed that may be used in further program modeling efforts; such as in
describing subprograms, etc., when program segments may be parameterized in terms of
instructions as atoms. The cache model is appropriate for systems where instructions
and data are stored in global memory and local cache memory is associated with each
processor. Note that a shared, circuit switched, bus with global memory attached to it
behaves as a single GRM. Hence the analysis described here applies directly to simple

single shared bus systems with distributed caches.

Parameters of the model include: the fraction of memory references that fetch
instructions, the fraction that fetch data; the fraction of instructions that read operands,
the fraction that write results, etc.; cache memory hit ratics; and firmware execution

timing statistics.

The performance measure of primary importance is the mean instruction execution
rate. Utilizations may be used to show that, for example, there is enough GRM utiliza-
tion not used by processors for system devices not included in the processor set, such as
/O channels that use global memory. Utilizations are not primary in describing system
operation speed. 1/O channels may be included in the system model if the system
evaluator designates appropriate device activity descriptions. If all active devices are
included in the model, utilizations become secondary in importance. The model descrip-

tion will be pursued, solutions are not sought.

129

130

7.1. PE Cache Memory Organization

With each processor will be associated a cache memory which stores local data
(that is allowed to be cached) and PE instructions, see figure 7.1. The finite capacity of
PE cache memory may require cache content swapping. The memory management unit
examines addresses generated by processor hardware and does any virtual memory trans-
lation and cache or global memory request control required. Virtual memory behavior

will be ignored in this chapter.

Processors fetch instructions from local cache memory or from global memory when
a cache miss occurs. Data references made by processors are either directed toward
cache memory or are directed to global memory when: data from global data structures
i3 not allowed “o be cached, as in the case of global data structures; or when the con-
tents of the referenced location are not presently contained in cache memory. A global
cache memory (i.e., one cache that is used by all PE’s), could be modeled using a subset
of the GRM's. The reference pattern parameters (n,,,) may be used to model such con-

figurations.

s ~ S SRR S) global memoary
system

Figure 7.1 Processor/cache configuration.

—

s

e

131

Consider cache content replacement policies. The term "write-through” pertains to
the cache maintenance policy where any memory write operation takes place in cache (if
the referenced word is contained in cache) and global memory. Hence a write "through”
the cache takes place. If the referenced word is not in cache, then a write operation will
take place only in global memory, no line fetch or replacement will be done, see [Smi82].
In this case any line in cache may be found in an identical form in global memory. In a
multiprocessor, this property may only be obtained if the cache coherence problem is
solved in some manner. It will be assumed that data is tagged as cacheable or non-
cacheable, and non-cacheable data may only be stored in global memory, so the

coherency problem will not be important.

Another maintenance policy also considered will be termed "copy-back” [Smi82]. In
this policy, cache lines needing replacement upon cache misses are copied back into glo-
bal memory before new lines take their position in cache (there may certainly be some
fetch overlapping in the physical implementation, hence bounds may be the only obtain-
able results, see the later discussion). Processors write cacheable data only into cache.
Furthermore, if the referenced word is not in cache at the time, it will be read into cache
before the write proceeds (the write into cache may actually take place concurrent with
the cache line load, such details will be ignored in this example). This policy causes one
or two global memory transfers to take place upon a cache miss: one if the line to be
replaced has not been modified since being read into cache, its image exists in global
memory so it need not be copied back; or two when the line to be replaced has been

modified since being read into cache, its image in global memory is no longer valid.

When a line is fetched from global memory by the memory management unit L
words are moved at a time, this group of words is called a cache line (appropriate read
through to the processor might be done). This line fetch may be done in many ways in

the context of the memory system considered.

In the two extremes considered here, a line may be moved in a single circuit
switched connection to an appropriate GRM, or a line may be moved with one request
sent to L GRM’s (of which there may be kL, k£ an integer) for a single word transfer
to/from each GRM simultaneously. These two forms of line transfers will be termed line

fetching and scatter fetching respectively. An interesting use of the model is the com-

132

parison of these two techniques for implementing cache/global memory interactions.

Appropriate instruction execution atoms are shown in figure 7.2. Entries to state
1 designate the initiation of new instructions, hence the mean time between entries to

state 1 (Eﬂu) represents the mean instruction execution time for a given PE.

For the purposes of this example, consider the processor to be a one address
machine so that associated with an instruction execution is at most one data reference.
More elaborate instruction ezecution models may be developed based on a particular pro-
cessor design. For example, multi-memory operand instructions could be modeled by

associating with a sequence of k global memory references, k reference states in the PE

Case 1: Scattar feton, write-through

Instruction Irstruction
Fetan Fetan Clobal sata Sats Dats Oata
reference Read Read vrite
cache Nt Cache mise Cache hit Cache niss (write
(read inger.) through)

® ©

Figure 7.2 PE descriptions.

133

Case 2 Scatter fetch, copy-back

Instruction Instruction Instructd,
Feton Fetoh Fetch Clobal deta Oata Oata Sata

refarence reference Tefarence referance
Caohe Nt Cache nise Canhe niss ‘. it Cache niss Cache miss
(replecenent))i (reed line) ol) (reea)

® ®

Q)

Figure 7.2 (continued)

134

Case 3: Line fetch, wvrite-through

Initiate
Instruction
Exscution

i y) ¥

— o) [) \
dlobal aata lata deta g

[Faton Fatch Farch {, reterance T Ieference refersnce {.
cache Mt tache niss tache iz cacne nit cache itz |
(Teplacenent) (reea 1ine)) |) - ((replacenent)

® |\o /1 ®

Figure 7.2 (continued)

state diagram. A different instruction execution diagram for each basic type of instruc-
tion available could be drawn and weightings could be assigned to each branch (from an

instruction fetch state for example) according to their relative occurrence frequencies.

The required statistics used for instruction execution modeling might be compiled

using appropriate benchmark programs executed on a uniprocessor. See figure 7.5.

7.2. Parameters of the PE Actlvity Model
PE state diagrams are shown in figures 7.2 and 7.3 for the two possible replacement
policies considered here: write-through; and copy-back. The mean system instruction

execution rate is given by:

135

. . . P
System instruction execution rate = —

Cpll

The parameters are:

hy = instruction hit ratio
hp = data hit ratio for cacheable data items
rr = instruction reference ratio, i.e.,

the fraction of processor memory references
used to fetch instructions

'p = data reference ratio, i.e.,
the fraction of memory references used to access data
=] ~ re
r = the replacement fraction, i.e.,

the fraction of cache writes that cause
a copy-back to occur

fro = fraction of data references that are reads

Furthermore, divide rp into two distinguishable subfractions rp, and rp,:

fraction of data references that pertain to noncacheable (global) data items

rDG =
o, = fraction of data references that pertain to cacheable data items
™D = rp, + o,

The above fractions will be used as probabilities, this is similar to the use of

instruction occurrence frequencies as probabilities.

Again, two replacement policies will be used: write-through, where upon writing
into cache,.the memory management unit also writes into the appropriate location in
main memory; and copy-back, where lines are copied to global memory if they need to

be replaced and have been modified since being read into cache.
Therefore, four cases arise:

Case 1 - Scatter fetching with write-though replacement.
Case 2 - Scatter fetching with copy-back replacement.
Case3 - Line fetching with write-through replacement.

Case4 - Line fetching with copy-back replacement.

138

Scatter fetching is easily modeled accurately if all global memory references are
based on a line reference. (This may be realistic if hardware only allows this type of
data transfer.) That is, each time a GRM reference is made, a request is emitted simul-
taneously for all GRM's. Simultaneous emission of requests for all GRM's ensures GRM
queue length equality for all points in time. This allows a reduction to be done in that
the GRM system may be logically replaced by a single GRM.! Hence, in the model

domain, a P X 1 system is used if M = L.

In the line fetching cases, the memory management unit emits a request for one of
M GRM’s to obtain a connection to transfer either: one or two lines of words when line
transfers are required; or a single memory word move for a global data word transfer or

write-through operation.

7.3. Transition Matrices and Bounds

Transition matrices and bounding schemes are detailed for the four cases. Sojourn
and connection times are given by hardware timing specifications and the line length L.

The cases are described next:

L1f a single GRM request is emitted when a single data item is moved, then using the scatter fetch assumption pro-
vides an upper (depending on the fraction of single references to total references the bound may be close to the solution
value} bound on mean instruction execution time. This approximate upper bound will be discussed hereafter.

137

Case 1 - Scatter fetching with write-through replacement.

P, =
0k n(=hy) (e)(erp) (ordeo o ko (1-rrXi-fao)rp, O (1-rrlfro o, (1-hp)
10 0 0 0 0 0 0
10 0 0 0 0 0 0 :
o0 0 0 0 0 1 0 |
"0 0 0 0 0 1 0
oo 0 0 0 0 1 0 |
0y 1-h 0 0 0 0 0
"o 0 0 0 0 1 0

Within the transition matrices, products of probabilities or their complements may
be interpreted as joint probabilities so that r, & = Pr{an instruction reference is made
and a cache hit occurs). The derivation of transition probabilities is relatively straight-

forward.

When computing the mean instruction execution time bounds may be ascertained
in a straightforward manner, whereas accurate p;'edictions are more difficult to obtain.
Since this is only an example and is not intended as a complete cache model, only
bounds will be described. An upper bound on mean instruction execution time may be

computed by assuming states 4 and 8 to be GRM reference states: 1z = {3, 4, 6, 8}, see

figure 7.2. This provides an upper bound in that it assumes a scatter (line) write occurs
on write-through whereas in reality a single GRM may be singled out for the word
write-through. By assuming a scatter fetch instead, the model overestimates the amount
of GRM reference activity so queueing effects will be overestimated. Hence the mean

state 1 cycle time will be overestimated.

Lower bounds on the mean instruction execution time may be determined in two
cases: when a write-through operation delays processor activity (no concurrency within
instruction execution); and when write-through takes place concurrently with processor
operation. In the sequential write-through case, assume states 4 and 8 to be computa-
tion states with sojourn times given by their connection times. This provides a lower
bound on the mean instruction time in that in reality more queueing will be evident

than the assumptions describe and queueing time will be present in states 4 and 6

138

sojourn times: Qp = {3, 8}.

In the concurrent write-through case assume states 4 and 6 to be computation
states with no sojourn time (they are essentially removed). This provides an approxi-

mate lower bound on the mean instruction execution time.

Bounds may be derived from qualitative concepts, the SMP model's {ramework
allows the system evaluator to reason at the SMP level. It would be difficult to do the
same straightforward, qualitative reasoning when using an ARP based model [Hoo77,

MuM82a].

139

Case 2 - Scatter fetching with copy-back replacement.

P, =
0 A -k)r/, (1-7;)(I—IDC) (1-r,)rDC hy (-1 X1-hp)rDc i 0 {1k)(l—r‘,) (-1, X1-4,)rDC (l—r/)
1 0 0 0 0 0 9 0 0
1 0 0 0 0 bl 0 0 0
0 0 0 0 0 0 i 0 0
0 0 Q 0 0 0 1 0 0
o0 0 0 0 0 1 0 0
0 R (A (1A Klery) 0) 0 0 0
1 0 0 0 0 Q b} 0 o]
0 0 0 0 0 0 1 0 0

As in case 1, upper and lower bounds on mean instruction execution times may be
determined as follows: an upper bound on the mean instruction execution time is deter-

mined when state 4 is taken to be a reference state: 0z = {3, 4,6,8,9}. A lower bound

on the mean instruction execution time is determined when state 4 is taken to be a com-

putation state with sojourn time given by its connection time: Qp = {3, 6, 8, 9}.

In both cases, states 3 and 6 represent line replacement states where a cache line is
written from cache into global memory and its successor is read from global memory into
cache. Hence these states’ connection times are determined by the time required to write
a cache line and then read a cache line (recall that it takes a single word transfer time
for either operation because this is the scatter fetch case, a line is transferred in parallel
to/from global memory) hence a two word transfer time would be appropriate. States 8
and 9 are entered when no replacement needs to be done, only a new line needs to be

read so the connection time for these two states is given by a single line read time.

140
Case 3 - Line fetching with write-through replacement.

This has the same transition matrix as case 1.

Each PE request’s destination is uniformly distributed over all GRM’s under the
reasonable assumption of interleaved address mapping into GRM numbers. Furthermore
connection times for GRM references are given by the time required to read or write a
line of L words from/to the chosen GRM in a circuit switched connection. The connec-
tion time for states 4 and 8 is given by the time required to move a single word between

the PE and the required GRM: Qa, = {3, 4,6, 8}.

Again, by taking the write-through states (4 and 8) to be computation states of
negligible sojourn time an approximate lower bound on the mean instruction execution

time may be obtained.

141
Case 4 - Line fetching with copy-back replacement.

This case is similar to case 2 but states 3 and 6 must be separated to represent the

two possibilities for request emissions: if, on a line replacement, both the line to be writ-

11 1

ten and the line to be read fall into the same GRM (with probability MO E),

then a single connection transfers 2L words; alternatively, if the two lines to be moved

fall into different GRM's (with probability 1 - —‘:11—2-), two references are made. If the

two references are made sequentially (due to lookahead unit complexity limitations), an

appropriate state diagram is given in figure 7.3.

The transition matrix is similar to case 2 so will not be displayed, modifications in
transitions relevant to entries to states 3 and 10, and 8 and 12 are required. Notice that
the state 12, 13 sequence describes the emission of two requests for line transfers and as
such must in actuality reference two distinct GRM’'s. This could be represented by
separating these two states into M similar parallel copies as shown in figure 7.4 -- one
for each GRM referenced on the {irst request emission. The same applies to the state 10,
11 sequence. To reduce complexity the parallel states in figure 7.4 might be lumped
(with some error ensuing) as in figure 7.3 with 7,12, = 1/M, 7,13» = 1/M. Recognize
that this is an approximation. The model is powerful enough to be used more accurately
by using the M parallel cases substituted for the approximate states 12 and 13 (the
computed results may though be the same for the explicit and lumped configurations
because of the fractional argument). Again concurrent processor operations may be

examined to obtain bounds on the mean instruction execution time.

If cache write and reads occur concurrently when distinct GRM's are referenced, a
PE may emit two requests simultaneously. This violates the single request per PE
assumption so the SMP model as described so far may be difficult to apply. The next
chapter discusses SMP model extensions that may be used to model multiple request

emissions, the problem has not generally been solved sufficiently.

142

Figure 7.3 Case 4 instruction execution timing.

143

Reference Refearence
GRt 1 G n
Reference Reference
o GRY
J el j 'y]

Figure 7.4 M parallel reference states to replace states 12, 13 and 10, 11.

7.4. Conclusions

This chapter demonstrated an application for the SMP model in a design com-
parison study. The example shows the natural descriptions that may be used to
represent PE behavior at a low level of PE operation. Had the ARP based models of
processor behavior been employed, little could have been said about instruction execu-
tion times. For example, using ARP based models requires either: inter-reference and
connection times be determined experimentally (on a uniprocessor for example), instruc-
tion execution times are still undeterminable from the ARP level of description; or an
SMP to ARP reduction could be done (to coerce the cache state diagrams into an ARP
model description), then waiting times could be found from the chosen ARP model, and

finally an SMP description could be used to derive instruction execution times from

144

waiting times. In short, if timing measures are desired then some form of SMP analysis

will be required. The SMP model supplies directly these aspects of timing analysis.

Clearly, the instruction model described here is a simplification of processor timing
evident in real systems. The description may be extended to include more realistic tim-
ing descriptions. Figure 7.5 shows a more sophisticated instruction execution diagram
where various types of instructions have been separated into different branches off of an

instruction fetch state.

Figure 7.5 Simple extension of the instruction execution model.

CHAPTER 8

MODEL EXTENSIONS AND MODIFICATIONS

Model extensions are described in this chapter. Statements or calculations are
made when appropriate. The emphasis is on describing problems that have been
encountered but not yet solved sufficiently. Hence further work might address the

model modifications described.

8.1. State Occupation Overlapping

Since processor hardware often overlaps operations (e.g., lookahead, etc.) modeling
such behavior is desirable. Figure 8.1 shows an example where a PE performs two
operations concurrently in a fork/join operation. To model this behavior, concurrently
occupied states may be lumped together into a single composite state. The sojourn
time for the composite state is required by the SMP model. Clearly, the sojourn time for

composite states is given by:

S,c = max{S, }
s¢ C
Where C is the "composite” state composed of a set of states s ¢ C C A;. Further exact
calculations for moments of composite state sojourn times require the CDF’s S,,(t). The

CDF's are required because

Se = [(1=S,c (0)as

Syc(t) = Pr(g',c < t)= Pr(g',, <t foralls € C)
If all states # ¢ C have independent sojourn times this becomes

SpC(t) = Hsps (t)

s¢C
Bounds may be placed on §pC without S, (¢) though:

145

148
Soc(t) < Sy (t) foralls € C, and ¢ € [0,00)
because the above product is less than any term in the product. Hence,
1-5,c(t) 2 1-5,,(t) forall s € C, and t ¢ [0,00)
S,c -.-=f (1-Syc(that > ["- Sy (1))t = 5, foralls e C

So,

3 -

SpC = ?{%{Sys}

Taking this bound to be an equality would give a lower bound on cycle times (state
transition times) - assuming that W,, are known — in that composite states may be
occupied for more time than ascertained by the bound. Computationally, taking the

above bound to be an equality is unpredictable. Consider assuming the bound to be an

concurrently

Operation 1 Operation 2

Figure 8.1 Overlapped state occupation.

147

equality, and consider the solution process on the £ iteration of the fixed point solution
procedure. Due to equation (3.24), assuming the lower bound makes computed rates on
the k™ iteration higher than actual rates. These rates then raise waiting times com-
puted on the k+1% iteration, which in turn increases the assumed lower bound for refer-
ence state sojourn times and decreases rates computed on the k+1% iteration. This then
reduces the waiting times computed on the k+2"* iteration. Hence as iterations proceed,
S,c may not be necessarily be computed as max{$5,, }, the computed value oscillates ini-
tially but will (probably) converge to a particular value of unknown quality. Although
approximate results may be obtained using this technique, their quality has not been
verified. Perhaps further work is warranted on this aspect. If composite states are
defined, it will be necessary to modify previous notation for request probabilities, etc.

These aspects have not been pursued or formalized.

To model concurrent PE activity during GRM references (such as when processors
overlap computations with resource use) other techniques may be developed. For exam-
ple, when overlapped references and computations are to be modeled the desired model
property is to have GRM reference times (for overlapped states) not affect SMP transi-
tion time characteristics; that is, the sojourn time for overlapped reference states should
be zero, they should not delay PE state machine sequencing. The technique will be to
coerce the overlapped states into the context of the present SMP model. This may be
done as follows: associate with appropriate reference states (whose sojourn times are to

be neglected) "anti-reference’ states.

Consider a reference state and its anti-reference state: the anti-reference state is
occupied just prior to the overlapped reference state so that the two (reference and anti-
reference states) are always paired together. (When the anti-reference state is exited, its
associated pormal reference state is entered with probability one.) Furthermore, the
anti-reference states’ sojourn time is given by the negative of the its associated normal
reference state. No requests are emitted upon entries to anti-reference states, a request
is emitted at the entry to the normal reference state (the converse choice is also valid).
Since the two states are occupied sequentially, the net delay encountered (in the model,
as viewed from the PE/GRM interface) during the resource use is zero, but a request s
emitted. (State occupation ordering could be reversed, the sequence is irrelevant.) Hence

(iRM queueing times will be affected as they should be. Consider a stochastic path,

148

~

Z,(t): a transition is made through the overlapped reference state instantly and PE state

machine sequencing proceeds.

For example, consider a simple PE description where a computation state (of
sojourn time 2 say) leads to a reference state (with connection time 1 say) which is occu-
pied "concurrently” with the computation state so that the time between request emis-
sions is 2 units (the computation state cycle time). The situation may be depicted as in
figure 8.2 with the appropriate anti-reference state. There are still unsoclved problems
with this technique. If PE’s emit requests faster than the global resource system may
service them (the effect might be ignored if it occurs with small probability) a resource
system "overflow” condition will occur. This would be the case il a system has P >> Af

so that W > 1.

Care must be used in applying the previous notation to anti-states it is not
appropriate to ask about the fraction of time that a PE spends in anti-reference states,
for this would be negative. It seems that statements may only be made about anti-
reference states paired with their corresponding normal states. If the sum is used for
finding the fraction of time that a PE spends in a reference/anti-reference state pair and
(3.12) is used for each state (reference and anti-reference), then the result is zero as it

should be - the PE spends no measurable time in overlapped reference states.

In summary, the SMP model may be enhanced with this state type. The utility of
anti-reference states suggests that there may be a use for anti-computation states. Their

existence and use have not been examined.

8.2. Muiltiple Requests

Consider extending the SMP model framework to allow PE's to emit multiple
requests. For example, lookahead units may emit multiple requests before connections
are required. There are, though, problems involved with multiple request emissions aside

from the obvious data dependency requirements.

Consider an example where two requests are emitted simultaneously for different
GRM’s (i and j) when a reference state is entered by a given PE. The two requests are
placed in GRM queues i and ; until the connections may begin. If the connection to

GRM i becomes available first, PE interface hardware starts the circuit switched

149

Computation 2 time units

state
’ R
Anti-
reference
ctate <4———sojoumn time: - (1 + W)

__ Reference

state ¢—sojoumn time: 1 + W

Figure 8.2 Anti-reference state example.

connection between the PE and GRM i. If during the GRM i connection the GRM ;

connection becomes available, GRM j must wait until the PE may use it. This in effect

places a return queue for connections at each PE. Notice that GRM j, while waiting for

the required PE, may either: continue waiting, in which case effective connection times

have been increased at the expenmse of waiting times; or it may temporarily activate

another PE’s connection if there is one in queue. The second choice seems to introduce

much more complexity into the design of GRM’s, so much so that it is doubtful that

preemptive connections would be used at the PE/GRM level of implementation, except

with very slow devices such as disks. The first choice is most appropriate but again will
effectively increase waiting times. In any event, it may be necessary to ensure temporal

integrity in returning connections due to possible data dependencies.

150

It is believed that the first case might be modeled by enhancing the SMP model
roughly as follows: new notation for request emission probabilities (1,,») must be dev-

ised. For example, rather than
Npsm = Pr{PE p emits a GRM request when it enters state s and it is for GRM m)
we might define
€psm = Pr(PE p emits a request for GRM m when it enters state 3).

Then ¢,y =1, ¢, = 1, etc. may be allowed. The mean number of requests emitted in

state s would be ¥ ¢, .
mn

For reference states, multiple simultaneous emissions may be modeled as con-
currently occupied states, see figure 8.3. Due to analysis complexity, it is believed that
several moments of waiting and connection times (including the effects due to return
queueing also) will be required. Formulations including CDF’s are possible, they have

not been pursued.

An aspect related to concurrent and overlapped timing is the concept of optimal
lookahead (prefetch) operation. Lookahead request emission may be used to overcome
degradation attributable to waiting times. Consider a simple single request per PE case
and an ARP description of PE behavior as in figure 8.4. Here PE , emits a request

W, = Y W,n n,m units of time before the connection is required. This allows the mean
m

rate of ARP cycling to achieve its potential (where queueing time is zero). Note that the
effects from lookahead timing themselves must be included in the analysis in that too long
a lookahead will yield idle GRM's because connections will be established too soon, PE's
will not be ready to use the GRM’s at the time the connections are ready. Alternatively,
if the lookahead unit underestimates queueing times, then a mean waiting time will still
be present. It does not suffice to compute W, independent of the lookahead unit and
then set the lookahead time to this value. In the ARP domain of PE description, a tech-
nique for finding this optimal lookahead time is to set the computation state sojourn
time with lookahead (5,) to §,; - W,. That is, in each iteration of equation solution
set S, =35, - W, and use 5; as the equivalent state 1 mean sojourn time. The

final solution that results for W, represents the lookahead time that is appropriate.

151

Figure 8.3 Multiple request timing example.

If W,, = EWM ry;,, is chosen as the lockahead for all GRM’s, it might not be

appropriate for a particular GRM, i.e. W, may not be W, except in symmetric situa-

tions.

It is possible that even in the symmetric situation W, > S, in which case no
optimal (in the sense of processors seeing no queueing time) solution exists for the looka-

head time.

Since the SMP to ARP reduction is involved in determining lookahead times and it
ignores the dependence of waiting times on emission states, error ensues in that the ARP
description does not guarantee instantaneous temporal equivalence. That is, if two
GRM references occur sequentially and rapidly, the lookahead unit -- it uses W, as its

lookahead time -- may not compensate for each reference queueing time. The deception

152

arises from the use of the ARP in describing processes which are not actually renewal
processes -- time varying behavior has been approximated with steady-state statistics,

and average values are used as the lookahead times.

Refsrence
state

Computation state

/ R

Processor enters Enits request Connection is
computation stats resdy

tine >

Figure 8.4 Lookahead timing.

153

8.3. Operating System Effects

The basic SMP model has assumed that a single process executes on each PE.
Meaningful results are believed to be obtainable in multiprogrammed situations if job
mixes are known for each PE and detailed information on operating system behavior is

available.

Again, the key to finding an individual program's mean execution time (CPU time,
not elapsed user time, this is dependent on scheduling algorithms, etc.) is the prediction
of mean queueing times. Mean queueing times may be estimated by using an average
mix of ”jobs” that execute on PE’s. Effects due to PE i on PE j would be weighted by
the fraction of CPU time received by various tasks/programs executing on PE i, includ-

ing the operating system running on PE i.

Although the approach may seem complex, it is simply an approach whereby PE
behavior is modeled as the average behavior of those tasks that execute on the PE.
Lumping programs together that exhibit much different resource use in various phases of
execution may cause an accuracy problem to arise. Consider an example, suppose we are
interested in computing waiting times for PE 2's program in a dual processor. During
program 2's execution however, PE 1 switches context from one program to another.
After the PE 1 context switch, PE 2 waiting times may change drastically, depending on
the characteristics of the two PE 1 programs. The effects may not be predicted properly

with simple fractional mixes.

8.4. Phases of Computations

When programs execute in phases, or PE's switch context, the problem of system
behavior with these phase changes must be addressed. The complexity of phased
analysis is large if done rigorously and it seems that simplifying approximation must be
employed. An example of a possible modeling technique is the construction of a system
wide SMP whose states represent the set of programs executing on each PE at the given
time. Transitions among these global SMP states correspond to context changes in PE’s,

see [MaM82]. This approach appears to be intractably complex.

Programs which execute in phases might be modeled by abstracting the SMP model

equations to a higher level where states in the new high level SMP model are in

1654

themselves SMP’s of the basic variety described thus far. The abstraction provides a
straightforward technique for accommodating phased computations. This seems to be a

reasonable, tractable approach to phase analysis.

8.5. Process Communleation

Consider modeling various forms of process/program communication where pro-
grams executing on different PE's communicate with each other. Two forms of process
communication will be discussed: direct process communications where PE's (their state
diagrams) exhibit direct state occupation coupling; and indirect process communication

through message queues contained in global memory.

8.5.1. Direct Process Communication

The simplest example of two processes communicating directly where a sender pro-
cess Writes a message into, for example, a mailbox location. A receiver process checks its
mailbox to see when the message arrives. In the case where the sender waits for the
receiver to "catch up,” a process join has been created (the receiver waits for a message
if it checks the mailbox first), see figure 8.4 — this is the case considered in this subsec-
tion. (The other situation, where a message queue may form, is considered next.) Define
the communication states for processes i and j to be 5, and s, respectively. Then from
the connectedness of process behavior:

~

C:s‘ 3, (Cd) = C}sj) (U) (81)
where w represents the particular process cycle (from s, to s,) in question. This reflects
the fact that neither process may get ahead of the other in terms of cycle times with

respect to their communication states.

Consider the sojourn time for each communication state s, and 9, . If these may be
established, then as before, each SMP will have been sufficiently characterized. Keep in
mind that the concepts certainly need to be extended to the case where are multiple

communication states in many SMP's.

From the characterization of the join above, note that one and only one of the two

processes will wait in its communication state for a nonzero time, hence:

155

Figure 8.5 Direct communication process linking.

or,

~

S (W)X §,,’ (wy=10 (8.2)
The problem is that neither (8.1) or (8.2) uniquely identifies mean cycle times or sojourn

times from the solution point of view. (8.1) establishes the equality, but does not

158

describe how a solution may be obtained. (8.2) is informative, but is of little use in
establishing either mean value (the two random variable Sy, (w) and 5/.,}(«;) are not

independent). It appears that the only approach to finding “9—”; or S‘:,,} and consequently

C,, = 5],) ; is the computation of approximate CDF’s for message waiting times. For

+

example, the mean sojourn times may be characterized as follows
§". (w) = E| message waiting time | process i must wait |Pr{process i must wait)

Pr{process i must wait) = Pr(T, (3 ,{s,}) < T (8 .{s })
=1 ~Pr(T (2,{8,}) > T (5.{2, }))
from the previous notation. The only way to compute this seems to be as follows
(assuming that both PE’s i and j leave their states s, and s, simultaneously):
Pr(process i must wait) = 1 -f T, (s, {2, },1)dT, (o, ,{3, },1)
Which requires the state transition time CDF's (or at least cycle time CDF’s). Represen-
tative functions might be assumed for T, (2,,{s, },t) and T, (s, ,{s, },t) from which moment
matching may be used to find various unknowns in the representative functions. The
form of these representative functions should be determined from real program commun-

ication data.

Due to (8.2):

Pr{process i must wait) = Pr(§, >0)= Pr(S),] = 0).
To compute the mean time that process i must spend waiting for process j, we
might consider:

process i message waiting time (w)

f,(a,,{e,})(w)-ﬁ(s,,{s.})(w) f (3 {2, Dw) > T (s, {5 })w
0 (5, {8 DW) € T (s, (0)

That is, we are finding the conditional expectation of the difference between entry times

to the communication state. The calculations appropriate are (abbreviate

~ o~

T, = T,(s5,{5 D), T. = T (s, {s,)

Pr{process i message waiting time < « | process i muat wait) =

157

4

h fl Sa)
=PAT, < T, <a+T)
= [PAB< T, < a+)T (3)

v
A
<
AN

= [T(PAT, S a+ 9)- PAT, <)T, (3)
= [T(T,(a+ 8- T,(9) + PAT, = 8)dT.(9)
=W, (a)

Then the conditional waiting time is given by:

Elprocess i message waiting time | process i must wail] = j;n(l - W, (t))dt
To perform these computations tractably, representative functions might be used.
Also note a very important characteristic which affects an accurate analysis: since
processes i and j exit their communication states simultaneously there is strong
correlation/dependence between states occupied in processes i and j. It may not be
appropriate to use general time quantities when computing effects on process i due to
process j at the level of detail required in this application. It seems, though, that to do

otherwise introduces time dependence into the physical queueing analysis.

The form of message waiting used in the implementation impacts GRM queueing
times. Consider a technique for message waiting where receiving PE's repeatedly check
their message queues (contained in GRM's) in a tight loop (referred to as a spin lock in
C.mmp terminology, [SiB82]). Here the message waiting process causes its own GRM
queueing times to increase because of the high rate of request arrival (from the spin lock)
at the GRM in question. Alternatively, if special "interrupt” hardware signals message
readiness, then there would be no increase in- GRM queueing times due to spin locks -
there would actually be a decrease because no GRM references would be made in mes-

sage walt states,

Notice that since the receiving process changes its characteristics when it is waiting
for messages, the problem of phase analysis is deeply embedded in the modeling of com-
municating PE’s. Transition probabilities will also be a function of sojourn times in that
the number of check loops executed by a receiving process in its wait state depends on
the mean message waiting time due to the sending process and the mean queue check

time (with GRM queueing times included in the spin lock case). See figure 8.6 for a

158

simple diagram. With this addition of sojourn and queueing time dependent transition
probabilities, the complexity of the solution process increases greatly. Each fixed point
iteration would, besides the previous calculations, require solving linear equations for the

embedded MC probabilities.

8.5.2. Indirect Process Communication

In this form of communication, processes communicate through message queues.
We will associate with receiving processes message queues (which would physically be
located in global memory) that senders deposit messages into. Aspects of importance in
this situation include the mean message queue lengths, message queueing time moments,
logical message queue server utilizations, etec. To obtain characteristics of message queue

behavior, message queue service and arrival processes must be characterized. To use, for

Pr(message is not ready) =
1 - Pr(message is ready)

Pr(message is ready)

Figure 8.8 Bernoulli message waiting.

159

example, a two moment based message queue model requires the first two moments of
message interarrival times and message queue service times. Both of these parameters
may be deduced (approximately) from considering the message source and service process
SMP transition times. That is, SMP timing characteristics directly affect the behavior

of these logical message queues.

For example, consider a message queue that a single process (SMP i) serves. Furth-
ermore, suppose that all other processes deposit messages into this message queue. The
physical implementation (such as its storage placement) of the message queue provide
details for the SMP model. Again, it is believed that the problem of phases is involved.
Note that this form of communication is not wholy distinct from the direct form, a

queue is simply allowed to form at the receiving process.

8.8. Conclusions

The discussion has been incomplete in many places in this chapter, it is intentional
as the concepts are only meant as guidelines for further study directions. The problem
of phase analysis seems to be related to many other model enhancements shown. State
occupation overlapping and multiple request emission modeling also seem to be impor-

tant enhancements.

CHAPTER 9

CONCLUSIONS AND SUMMARY

The model framework described is applicable to specific model development appli-
cations and provides general information about characteristics of system behavior. In its
present state, the SMP model of requestor/resource systems is more powerful than previ-
ous models specifically developed for modeling memory interference. The SMP model
supplies many of the necessary tools for constructing system models with the PE
description level chosen by the system evaluator. PE description levels may range from
the elementary alternating renewal process description considered in previous memory
interference models, through renewal based descriptions such as instruction execution

descriptions, up to complete program execution descriptions.

Attention to detail in the model development should help to ensure model applica-
bility in many situations. Apart from applications in system studies, the model analysis
results provide analytic insight into system behavior in a more detailed manner than
previously available. The generality in development allows the model to be applied in

non-computer applications including finite customer queueing network analysis.

In systems where requestors whose state transitions may be approximated by semi-
Markov processes and contend for system resource module service through a virtually
circuit switched crossbar, the SMP model as described may be applied. In situations
other than those described here, some equations may have to be re-written to reflect
specific system operation and new physical analysis may have to be done, but the entire
model framework need not be re-developed. This flexibility is achieved by using physical
analysis in characterizing resource system behavior. Physical analysis maintains reason-

ably low solution complexity even in reasonably general situations.

160

181

‘The SMP model of requestor activity allows requestor to be specified in a versatile,
natural way; the model calculations operate on requestor description parameters.
Parameters include: requestor state transition probability matrices; computation state
sojourn time moments; resource module service time moments; and resource module
reference probabilities, or reference patterns. The number of moments of time related
random variables required by the model is determined by the physical analysis. Using

first moments may allow bounds to be obtained.

With these parameters (one set applies to each requestor) the SMP model is capable
of predicting the following system performance measures: requestor state transition time
moments, and hence mean execution times and rates; system element utilizations and
data transfer rates; resource waiting time moments; and coefficients of variation for tim-
ing quantities. The meaning of the timing performance measures is determined by the
requestor activity representation chosen; that is, if processor activity representations
apply to program execution directly, then program execution times are predictable from
the model directly; alternatively, if processor activity representations apply to instruc-
tion execution timing, then instruction execution time moments may be predicted by the

model.

Along with the prediction capability is the general information obtainable from the
mathematical relationships. Summarizing some of the properties and results that have

been discussed here, but not necessarily in their order of importance:

higher moments of service and computation times may be important if requestor

synchronization is to be described

. resource queueing times are asymmetric in general, not all requestors "see” the

same resource system behavior

e in some system configurations (the system hardware description along with the
requestor state machines) resource queueing must exist, there may not be a perfect

synchronization scheme

e assuming resource queueing times to be requestor state invariant is approximately

equivalent to the reducibility of a requestor state machine (semi-Markov process) to

' . L

162

an alternating renewal process (of the sort considered in previous models) that is
useful for finding waiting times and other quantities not related to semi-Markov

process state transition times

* program execution times may be predicted reasonably accurately from model

parameters

o requestor activity may be modeled in a direct and natural way, state diagrams are

used to represent timing and resource reference characteristics of requestors

. the model framework is general enough that special case models may be devised for
specific purposes, for example, cache models may be devised in a straightforward

manner

e enhancements of the basic model allow process communication timing modeling to

be done

e experimental evidence seems to show that first moment matching suffices for
deducing program transition probabilities, loops may be represented probabilisti-

cally with reasonably accurate resuits for first moment timing predictions

o bounds on system performance measures may be derived from first moment quanti-

ties alone
o the model developed may be used for timing based comparison studies

o coefficients of variation may be computed, they provide information about system

behavior randomness
e resource utilizations are a robust quantity with respect to waiting time predictions

With the chapter 8 discussion on model extensions, it i3 believed that useful
enhancements may be made without major revisions in the ideas and relationships
described. Since the SMP model allows requestor descriptions to be formulated in a

natural way, it is doubtful that the model framework would need to be fully revised in

163

developing more modeling accuracy or capabilities. Enhancements and modifications

may be made as required in modeling new effects.

-
:
2

164

185

There seems to be an error in the calculations concerning the superposition of

two hypoexponential (coefficient of variation less than one) renewal processes as shown

in [Kue79]. The calculations described here are guided by [Kue79].

When superimposing two renewal processes (counting processes for example) the
resultant process is a renewal process only when the two original processes are. In gen-
eral, the result of a superposition is not a renewal process (only if both source processes
are Poisson is the result a renewal — and Poisson -- process). Treating the resultant pro-
cess as a renewal process leads to an approximate coefficient of variation. The approxi-
mation is most accurate when the renewal times for the superimposed processes have
densities on an interval. The approximation is least accurate when the two source pro-
cess renewal times are discrete in nature. [Kue79] proposed representative processes
which are based on the first two moments of the source processes (see figure A.l).
Renewal process theory will be used to compute a coefficient of variation for the result-
ing process. Notice that three cases ensue: both source processes have coefficient of vari-
ation less than 1; one source coefficient of variation is less than 1, the other is greater

than 1; and both source coefficients of variation are greater than 1. The first case will

be derived here, the second two are covered in [KueT9).

Call C the resulting coefficient of variation while ¢, and C, are the two source

coefficients of variation. Let Ty be the forward recurrence time (in the result process)
from an arbitrary examination time for the result process. Let t, = E[renewal time for
process 1], t, = E[renewal time for process 2|. Then:

bt =
tito

C2

=0
-

v =1
Since ¢, and ¢, are given, we need only calculate Ty .

Let F,(t) be the renewal time CDF for process 1 and F.{¢) be the renewal time CDF
for process 2. Then for the hypoexponential case these two CDF’s are:
0 0 S t S t]l
FJ (t) = {l—e-(ﬂ(b—t;l) ¢ 2 t;l
Where for j = 1, 2

ty =t (1~ C,) = deterministic time delay in figure A.1.a

€g = - rate of exponential delay in figure A.l.a

168

Figure A.1 Two moment representation function from [Kue79).

and if €, = 0 = ¢, = o or there is no exponential delay. Let te = 1/c,.

nmauT%uﬂwudanF(du)

from [Kue79]. Then T, = f (1- Ty (t))dt. Rearrange the two processes so that
{11 € ty. Then

T, af 1 Ty(t)d:+j 1 Ty (t))dt +Ln(1~TV(t))dt
Define

Ex"’f ITV())

Ex= f, 0Ty ()

€0
Ey= f,m(l“Tv(‘))d‘
Carry out the integrations as follows:

t<IiySin =

thSt<tg =

th<Lta st =

Lyt
Then
t < tl! s tﬂ =3
1
Ty(t)=1- ™ (¢, = t)(ta-t)
12
th<t<ty =
1 t-t
To(t) = 1- 7 (tize Ytz - 1)
b2
tpStast =
1 ¢, f -t e E~t
Ty(t)=1- i (£rpeH T D)t e =D

Ty (!) is continuous, Ty (0) = 0, Ty (o) = 1.

Ey = [, -1y ()
Loda |

tty ' 3

i

E;= j,ff‘(h Ty (1)t

tyyft
t]_?ée 11/12

byHe)E

Computing the three expectations E,,E, Ey:

b
«

3 + tytatyy)

~tft ~tyft
TR e [(‘21‘*’ tig=to)e BUE - (tyHtpty)e B 12]

tils

If t,2 =0, then assign E, = 0.

o

Ey= [(1-Ty(t))dt

21

tit e

Pt tiyie

trofom

fntm+ipin
tiatm

titotys + t)€

If gt == 0, assign E4 == 0. This completes

the approximate calculations for the result-

168

ing coefficient of variation when two hypoexponential processes are superimposed.

b
:
O
2
M

169

170

BIBLIOGRAPHY

[BaS78]
F. Baskett, and A. J. Smith, "Interference in Multiprocessor Computer Systems
with Interleaved Memory,” CACM, Vol. 19, No. 6, June 1978, pp. 327-334.

[Bha73]
D. P. Bhandarkar, " Analytic Models for Memory Interference in Multiprocessor
Computer Systems,” Ph.D. dissertation, Elec. Eng. Dept., Carnegie-Mellon Univ.,
Pittsburgh, PA, Rep. AD 773 843, Sept. 1973

[Bha73]
D. P. Bhandarkar, "Analysis of Memory Interference in Multiprocessors,” /EEE
TC, Vol. C-24, No. 9, Sept. 1975, pp. 897-908.

[Cin72]
E. Cinlar, "Superposition of Point Processes,” Stochastic Point Processes: Statisti-
cal Analysis, Theory, and Applications, Peter A'W. Lewis, Ed. John Wiley and
Sons, Inc. 1972, pp. 549-606.

[Cin75]
E. Cinlar, Introduction to Stochastic Processes, Prentice-Hall Inc., Englewood
Cliffs, N.J., 1975.

(Fre82]

jrre
A. A. Fredericks, "A Class of Approximations for the Waiting Time Distribution in
a GI/G/1 Queueing System,” Bell System Technical Journal, Vol. 81, No. 3, March
1982, pp- 295-325

[GrHT4]

L
D. Gross, and C. M. Harris, Fundamentals of Queueing Theory, John Wiley and
Sons Inc., New York, 1974.

[GoG83)
A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M.
Snir, "The NYU Ultracomputer—~Designing an MIMD Shared Memory Parallel
Computer,” [EEE TC, Vol. C-32, No. 2, Feb. 1983, pp. 175-189.

Hex82]
D. P. Heyman, and M. J. Sobel, Stochastic Models in Operations Research, Vol I:
Stochastic Processes and Operating Charactersstics, McGraw-Hill, Inc., New York,
1982.

‘HooT77]
C. H. Hoogendorn, "A General Model for Memory Interference in Multiprocessors,”
IFEE TC, Vol. C-26, No. 10, Oct. 1977, pp. 998-1005.

171

[Kle75)
L. Kleinrock, Queuesing Systems Volume I: Theory, John Wiley & Sons Inc., New

York, 1975.

[Knu73]
D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching,
Addison-Wesley Publishing Co., Inc., Reading, Mass., 1973.

[KrL78]
W. Kraemer, and M. Langenbach-Belz, " Approximate formulae for the delay in the
queueing system GI/G/1,” Congressbook, 8th Internat. Teletraffic Congress, Mel-
bourne, 1976.

[Kue79]
P. J. Kuehn, "Approximate Analysis of General Queueing Networks by Decom posi-
tion,” [EEE Transaction on Communications, Vol. COM-27, No. 1, Jan. 1979, pp.
113-126.

[MaG81]
M. A. Marsan, and M. Geria, Markov Models for Multiple Bus Multiprocessor Sys-
tems, Report No. CSD 810304, Computer Science Department, UCLA, Feb. 1981.

[MaM82] .
B. A. Makrucki, and T. N. Mudge, " A Stochastic Model of Parallel and Concurrent
Program Execution on Multiprocessors,” Computing Research Lab Report No.
CRL-TR-3-82, Dept. of Electrical and Computer Engineering, University of Michi-
gan, October 1982.

McC73]
J. W. McCredie, "Analytic Models as Aids in Multiprocessor Design,” Proc. 7th
Annual Princeton Conf. on Information and System Sciences, March 1973, pp. 186
191.

[MuM82a]
T. N. Mudge and B. A. Makrucki, "Probabilistic Analysis of a Crossbar Switch,”
Proc. 9th International Symposium on Computer Architecture, IEEE, April 1982,
pp. 311-320.

[MuM82b]
T. N. Mudge and B. A. Makrucki, "An Approximate Queueing Model For Packet
Switched Multistage Interconnection Networks,” Proc. of the 3-rd Int. Conference
on Distributed Computing Systems, October 1982, (to appear).

[MuM82c¢]
T. N. Mudge and B. A. Makrucki, "Analysis of Multistage Networks with Unique
Interconnection Paths,” Proceedings of the 1§-th Southeastern Symposium on Sys-
tem Theory, April 1982.

[Pat79]
J. H. Patel, "Processor-Memory Interconnections for Multiprocessors,” Proc. 6th

172

Annual Symp. on Computer Architecture, IEEE, April 1979, pp. 166-177.

[Ram85]
C. V. Ramamoorthy, "Discrete Markov Analysis of Computer Programs,

ACM 20th National Conference, pp. 386-392.

" Proc.

[Rau79) ’
B. R. Rau, "Interleaved Memory Bandwidth in a Model of a Multiprocessor Com-
puter System,” IEEE TC, Vol. C-28, No. 9, Sept. 1979, pp. 678-681.

[Ros70]
S. M. Ross, Applied Probability Models with Optimization Applications, Holden-Day,
Inc., San Francisco, 1970.

[SeD79|
A. S. Sethi, and N. Deo, "Interference in Multiprocessor Systems with Localized
Memory Access Probabilities,” I[EEE TC, Vol. C-28, No. 2, Feb. 1979, pp. 157-163.

[SeM81]
K. C. Sevecik and 1. Mitrani, "The Distribution of Queueing Network States at

Input and Output Instants,” JACM, Vol. 28, No. 2, April 1981, pp. 358-371.

[SiB82]
D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and
Ezamples, McGraw-Hill, Inc., New York, 1982.

[SkAB89]
C. E. Skinner, and J. R. Asher, "Effects of storage contention on system perfor-

mance,” /BM Systems Journal, No. 4, 1969, pp. 319-333.

[Smi74]
A. J. Smith, Performance Analysis of Computer System Components, Ph.D. Thesis,
STAN-CS-74-451, Computer Sci. Dept., Stanford Univ., August 1974.

[Smig2]
A. J. Smith, "Cache Memories,” ACM Computing Surveys, Vol. 14, No. 3, Sept.
1982, pp. 473-530.

[Str70]
W. D. Strecker, Analysis of the Instruction Ezecution Rate in Certasn Computer
Structures, Ph.D. dissertation, Carnegie-Mellon University, Pittsburgh, 1970.

[Whig3)

"Toward an Approximation Theory for Point Processes and Networks Queues,”
Newsletter of the ORSA|TIMS Applied Probabslity Group, Fall 1983, pp. 2-4.

